必要的库和工具
jupter notebook
Jupter Notebook是可以在浏览器中运行代码的交互环境,用于探索性数据分析。
都是通过cmd命令行打开。
安装:pip install jupyter
使用:jupyter notebook
撤销删除操作:
1.未运行的代码 Ctrl+Z 撤销
2.如果是运行过的代码,直接运行%history
,然后手动恢复。
批量注释:Ctrl+/
jupyter notebook的安装与使用
Python·Jupyter Notebook各种使用方法记录·持续更新
conda安装包报错
jupyter notebook自动补全
库安装:pip install numpy scipy matplotlib ipython scikit-learn pandas
查看版本:内置函数version
import pandas
pandas.__version__
机器学习
机器学习是从数据中提取知识,也叫预测分析或统计学习。本质上是一个迭代的过程。
机器学习算法:
监督学习算法:根据给定的输入给出预期输出
无监督学习算法:只有输入数据已知,没有为算法提供输出数据
机器学习中的每个实体或者每一行被称为一个样本或数据点,每一列(用来描述实体的属性)称为特征。
因此数据是一个二维数组(矩阵),目标是一个一维数组(向量)。
应用的实践
1.初识数据:加载数据集获得对象实例,观察样本及其特征。
2.衡量模型是否成功:分类训练数据与测试数据。
3.观察数据:数据可视化,绘制散点图。
4.构建模型:包含能够实现应用输入输出的算法。
5.做出预测:检测模型
6.评估模型:根据预测的正确率计算精度来衡量模型的优劣。