121.最佳时机一:
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。
注意你不能在买入股票前卖出股票。示例 1:
输入: [7,1,5,3,6,4]
输出: 5
解法一:暴力循环
这个用暴力循环比较找出最大值,很容易就可以得出结论,在这里我们不考虑此种方法。
解法二:找出低谷
我的第一个想法是,如果把股票价格用分段函数线性表示,那么一定存在波峰和波谷。那么,对于每一个极小值点,即波谷,我找出每个波谷后面最大的波峰,得出利润。再将这些利润进行比较,找出最大值。
class Solution {
public:
int MaxProfit(vector<int>& prices,int n)
{
if(n>=prices.size()-1)
return 0;
int Min=prices[n];
int Max=0;
for(int i=n;i<prices.size();++i)
{
if(prices[i]<=Min)
Min=prices[i];
else
{
Max=prices[i];
for(int j=i;j<prices.size();++j)
{
if(prices[j]>Max)
Max=prices[j];
}
//cout<<Max<<" "<<Min<<" "<<i<<endl;
return max(Max-Min,MaxProfit(prices,i));
}
if(i==prices.size()-1)
return 0;
}
return 0;
}
int maxProfit(vector<int>& prices)
{
return MaxProfit(prices,0);
}
};
因为我是想着用递归做,所以强行写成了递归,其实用循环改写代码还会简洁一些。
解法三:波谷波峰同步
这是看的标答:和我的思想类似,但是更简单。
就是不需要找出每个波谷对应的最大波峰,而是直接一次循环下去,依次储存最小值,以及最大利润。
class Solution {
public:
int maxProfit(vector<int>& prices)
{
if(prices.size()==0)
return 0;
int maxpro=0,minpri=prices[0];
for(int i=0;i<prices.size();++i)
{
if(minpri>prices[i])
minpri=prices[i];
else if(prices[i]-minpri>maxpro)
maxpro=prices[i]-minpri;
}
return maxpro;
}
};
然而耗时比上面那段程序长,不太懂为什么。
最佳时机二:
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
嗯…做了这道题我才发现,原来连续买进卖出,比一直压在手里在最高点卖要赚钱???我自己投的时候完全没意识到……
还是波峰波谷,但是这次其实比上次更简单。只需要寻找到连续的波峰波谷即可,每个波峰波谷的差值相加就是最大值。
int maxProfit(vector<int>& prices)
{
if(prices.size()==0)
return 0;
int maxpri=0,minpri=prices[0];
int maxpro=0,i=0;
while(i<prices.size()-1)
{
while(i<prices.size()-1&&prices[i]>=prices[i+1])
i++;
minpri=prices[i];
while(i<prices.size()-1&&prices[i]<=prices[i+1])
i++;
maxpri=prices[i];
maxpro+=maxpri-minpri;
}
return maxpro;
}
最佳时机三:
待续…