红黑树分析与JDK8中HashMap源码解析
BST
二叉查找树(Binary Search Tree,简称BST)是一棵二叉树,它的左子节点的值比父节点的值要小,右节点的值要比父节点的值大。它的高度决定了它的查找效率。
在理想的情况下,二叉查找树增删查改的时间复杂度为O(logN)(其中N为节点数),最坏的情况下为O(N)。
BST存在倾斜的问题
平衡的BST:
倾斜的BST:
public class BstTest {
static class Node {
public String content;
public Node parent;
public Node left;
public Node right;
public Node(String content) {
this.content = content;
}
}
public Node root;
// BST的查找操作
public Node search (String content) {
Node r = root;
while (r != null) {
if (r.content.equals(content)) {
return r;
} else if (content.compareTo(r.content) > 1) {
r = r.right;
} else if (content.compareTo(r.content) <= 1) {
r = r.left;
}
}
return null;
}
// BST的插入操作
public void insert (String content) {
Node newNode = new Node(content);
Node r = root;
Node parent = null;
if (r == null) {
root = newNode;
return;
}
while (r != null) {
parent = r;
if (newNode.content.compareTo(r.content) > 1) {
r = r.right;
} else if (newNode.content.compareTo(r.content) < 1){
r = r.left;
} else {
r = r.left;
}
}
if (parent.content.compareTo(newNode.content) > 1) {
parent.left = newNode;
newNode.parent = parent;
} else {
parent.right = newNode;
newNode.parent = parent;
}
}
}
O(1), O(n), O(logn), O(nlogn) 的区别
在描述算法复杂度时,经常用到O(1), O(n), O(logn), O(nlogn)来表示对应复杂度程度, 不过目前大家默认也通过这几个方式表示空间复杂度 。
那么,O(1), O(n), O(logn), O(nlogn)就可以看作既可表示算法复杂度,也可以表示空间复杂度。
大O加上()的形式,里面其实包裹的是一个函数f(),O(f()),指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
红黑树-RBTree
基于BST存在的问题,一种新的树——平衡二叉查找树(Balanced BST)产生了。平衡树在插入和删除的时候,会通过旋转操作将高度保持在logN。其中两款具有代表性的平衡树分别为AVL树和红黑树。AVL树由于实现比较复杂,而且插入和删除性能差,在实际环境下的应用不如红黑树。
红黑树(Red-Black Tree,以下简称RBTree)的实际应用非常广泛,比如Linux内核中的完全公平调度器、高精度计时器、ext3文件系统等等,各种语言的函数库如Java的TreeMap和TreeSet,C++ STL的map、multimap、multiset等。
RBTree也是函数式语言中最常用的持久数据结构之一,在计算几何中也有重要作用。值得一提的是,Java 8中HashMap的实现也因为用RBTree取代链表,性能有所提升。
《算法导论》中对于红黑树的定义如下:
- 每个结点或是红的,或是黑的
- 根节点是黑的
- 每个叶结点是黑的
- 如果一个结点是红的,则它的两个儿子都是黑的
- 对每个结点,从该结点到其子孙节点的所有路径上包含相同数目的黑结点
对与第4点,网上有些定义是:父子节点之间不能出现两个连续的红节点,这种定义和《算法导论》中定义的效果是一样的
RBTree在理论上还是一棵BST树,但是它在对BST的插入和删除操作时会维持树的平衡,即保证树的高度在[logN,logN+1](理论上,极端的情况下可以出现RBTree的高度达到2*logN,但实际上很难遇到)。这样RBTree的查找时间复杂度始终保持在O(logN)从而接近于理想的BST。RBTree的删除和插入操作的时间复杂度也是O(logN)。RBTree的查找操作就是BST的查找操作。
插入数据
向红黑树中插入新的结点。具体做法是,将新结点的 color 赋为红色,然后以BST的插入方法插入到红黑树中去。之所以将新插入的结点的颜色赋为红色,是因为:如果设为黑色,就会导致根到叶子的路径上有一条路上,多一个额外的黑结点,这个是很难调整的。但是设为红色结点后,可能会导致出现两个连续红色结点的冲突,那么可以通过颜色调换和树旋转来调整,这样简单多了。
接下来,讨论一下插入以后,红黑树的情况。设要插入的结点为N,其父结点为P,其 祖父结点为G,其父亲的兄弟结点为U(即P和U 是同一个结点的两个子结点)。如果P是黑色的,则整棵树不必调整就已经满足了红黑树的所有性质。如果P是红色的(可知,其父结点G一定是黑色的),则插入N后,违背了红色结点只能有黑色孩子的性质,需要进行调整。
调整时分以下三种情况:
新结点N的叔叔结点U是红色的
处理方式是:将P和U修改为黑色,G修改为红色。
现在新结点N有了一个黑色的父结点P,因为通过父结点P或叔父结点U的任何路径都必定通过祖父结点G,在这些路径上的黑结点数目没有改变。
但是,红色的祖父结点G的父结点也有可能是红色的,这就违反了性质3。为了解决这个问题,我们从祖父结点G开始递归向上调整颜色。如图2
新结点N的叔叔结点U是黑色的,且N是左孩子。
处理方式:对祖父结点G进行一次右旋转
在旋转后产生的树中,以前的父结点P现在是新结点N和以前的祖父节点G的父结点,然后交换以前的父结点P和祖父结点G的颜色,结果仍满足红黑树性质。如图 2.15。在(b)中,虚线代表原来的指针,实线代表旋转过后的指针。所谓旋转就是改变图中所示的两个指针的值即可。当然,在实际应用中,还有父指针p也需要修改,这里为了图示的简洁而省略掉了。
新结点N的叔叔结点U是黑色的,且N是右孩子。
处理方式:对P进行一次左旋转,就把问题转化成了第二种情况。如图 2.16所示。
红黑树插入数据的代码与二叉查找树是相同的,只是在插入以后,会对不满足红黑树性质的结点进行调整。
HashMap中红黑树的插入操作
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
TreeNode<K,V> x) {
// 新节点默认为红色
x.red = true;
// xp表示x的父结点,xpp表示x的祖父结点,xppl表示xpp的左孩子结点,xppr表示xpp的右孩子结点
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
// 如果x没有父结点,则表示x是第一个结点,自动为根节点,根节点为黑色
if ((xp = x.parent) == null) {
x.red = false;
return x;
}
// 如果父结点不是红色(就是黑色),或者x没有祖父节点,那么就证明x是第二层节点,父节点为根节点
// 这种情况无需就行操作
else if (!xp.red || (xpp = xp.parent) == null)
return root;
// 进入到这里,表示x的父节点为红色
// 如果x的父节点是祖父结点的左孩子
if (xp == (xppl = xpp.left)) {
// 祖父结点的右孩子,也就是x的叔叔节点不为空,且为红色
if ((xppr = xpp.right) != null && xppr.red) {
// 父节点和叔叔节点都为红色,只需要变色,且将x替换为祖父节点然后进行递归
xppr.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
// 如果叔叔节点为空,或者为黑色
else {
// 如果x节点为xp的右孩子
if (x == xp.right) {
// 先进行左旋,并且把x替换为xp进行递归,在左旋的过程中产生了新的root节点
root = rotateLeft(root, x = xp);
// x替换后,修改xp和xpp
xpp = (xp = x.parent) == null ? null : xp.parent;
}
// 如果x本来是左孩子,或者已经经过了上面的左旋之后,进行变色加右旋
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
}
// 如果x的父节点是祖父结点的右孩子
else {
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.left) {
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateLeft(root, xpp);
}
}
}
}
}
}
HashMap中红黑树的左右旋操作
static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
TreeNode<K,V> p) {
// pp是祖父结点
// p是待旋转结点
// r是p的右孩子结点
// rl是r的左孩子结点
TreeNode<K,V> r, pp, rl;
if (p != null && (r = p.right) != null) {
// 如果rl不为空,则设置p.right=rl
if ((rl = p.right = r.left) != null)
rl.parent = p;
// 如果祖父结点为null,那么r设置为黑色,r左旋之后即为root节点
if ((pp = r.parent = p.parent) == null)
(root = r).red = false;
// 如果待旋转结点是左孩子节点
else if (pp.left == p)
pp.left = r;
// 如果待旋转结点为右孩子
else
pp.right = r;
r.left = p;
p.parent = r;
}
return root;
}
static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> l, pp, lr;
if (p != null && (l = p.left) != null) {
if ((lr = p.left = l.right) != null)
lr.parent = p;
if ((pp = l.parent = p.parent) == null)
(root = l).red = false;
else if (pp.right == p)
pp.right = l;
else
pp.left = l;
l.right = p;
p.parent = l;
}
return root;
}
HashMap中的树化
final void treeify(Node<K,V>[] tab) {
TreeNode<K,V> root = null;
// 遍历当前链表
for (TreeNode<K,V> x = this, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (root == null) {
x.parent = null;
x.red = false;
root = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
// 每遍历一个链表上的元素就插入到红黑树中
for (TreeNode<K,V> p = root;;) {
int dir, ph;
K pk = p.key;
// 判断待插入结点应该插入在左子树还是右子树
// 先比较hash值
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
// 如果hash值相等,然后比较k.compareTo(pk)
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
// 如果还相等则再比较identityHashCode
dir = tieBreakOrder(k, pk);
// 根据dir的值就知道了待插入结点该插在左子树还是右子树了
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
root = balanceInsertion(root, x);
break;
}
}
}
}
moveRootToFront(tab, root);
}
JDK1.8中的ConcurrentHashMap源码分析
final V putVal(K key, V value, boolean onlyIfAbsent) {
// key和value不能为NULL
if (key == null || value == null) throw new NullPointerException();
// key所对应的hashcode
int hash = spread(key.hashCode());
int binCount = 0;
// 通过自旋的方式来插入数据
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
// 如果数组为空,则初始化
if (tab == null || (n = tab.length) == 0)
tab = initTable();
// 算出数组下标,然后获取数组上对应下标的元素,如果为null,则通过cas来赋值
// 如果赋值成功,则退出自旋,否则是因为数组上当前位置已经被其他线程赋值了,
// 所以失败,所以进入下一次循环后就不会再符合这个判断了
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
// 如果数组当前位置的元素的hash值等于MOVED,表示正在进行扩容,当前线程也进行扩容
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
// 对数组当前位置的元素进行加锁
synchronized (f) {
// 加锁后检查一下tab[i]上的元素是否发生了变化,如果发生了变化则直接进入下一次循环
// 如果没有发生变化,则开始插入新key,value
if (tabAt(tab, i) == f) {
// 如果tab[i]的hashcode是大于等于0的,那么就将元素插入到链表尾部
if (fh >= 0) {
binCount = 1; // binCount表示当前链表上节点的个数,不包括新节点
for (Node<K,V> e = f;; ++binCount) {
K ek;
// 遍历链表的过程中比较key是否存在一样的
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
// 插入到尾节点
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
// 如果tab[i]是TreeBin类型,表示tab[i]位置是一颗红黑树
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
// 在新插入元素的时候,如果不算这个新元素链表上的个数大于等于8了,那么就要进行树化
// 比如binCount为8,那么此时tab[i]上的链表长度为9,因为包括了新元素
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
// 存在key相同的元素
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
// 初始化数组
// 一个线程在put时如果发现tab是空的,则需要进行初始化
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
// sizeCtl默认等于0,如果为-1表示有其他线程正在进行初始化,本线程不竞争CPU
// yield表示放弃CPU,线程重新进入就绪状态,重新竞争CPU,如果竞争不到就等,如果竞争到了又继续循环
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
// 通过cas将sizeCtl改为-1,如果改成功了则进行后续操作
// 如果没有成功,则表示有其他线程在进行初始化或已经把数组初始化好了
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
// 当前线程将sizeCtl改为-1后,再一次判断数组是否为空
// 会不会存在一个线程进入到此处之后,数组不为空了?
if ((tab = table) == null || tab.length == 0) {
// 如果在构造ConcurrentHashMap时指定了数组初始容量,那么sizeCtl就为初始化容量
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
// 如果n为16,那么就是16-4=12
// sc = 3*n/4 = 0.75n, 初始化完成后sizeCtl的数字表示扩容的阈值
sc = n - (n >>> 2);
}
} finally {
// 此时sc为阈值
sizeCtl = sc;
}
break;
}
}
return tab;
}
private final void addCount(long x, int check) {
// 先通过CAS更新baseCount(+1)
// 如果更新失败则通过CAS更新CELLVALUE
// 如果仍然失败则调用fullAddCount
// as是一个CounterCell数组,一个CounterCell对象表示一个计数器,
// 多个线程在添加元素时,手写都会尝试去更新baseCount,那么只有一个线程能更新成功,另外的线程将更新失败
// 那么其他的线程就利用一个CounterCell对象来记一下数
CounterCell[] as; long b, s;
//
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
// 某个线程更新baseCount失败了
CounterCell a; long v; int m;
boolean uncontended = true;
// 如果CounterCell[]是null
// 或者CounterCell[]不为null的情况下CounterCell[]的长度小于1也就是等于0,
// 或者CounterCell[]长度不为0的情况下随机计算一个CounterCell[]的下标,并判断此下标位置是否为空
// 或者CounterCell[]中的某下标位置不为null的情况下通过cas修改CounterCell中的值失败了
// 才调用fullAddCount方法,然后返回
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);
return;
}
// 如果修改CELLVALUE成功了,这里的check就是binCount,这里为什么要判断小于等于1
if (check <= 1)
return;
// 如果修改CELLVALUE成功了,则统计ConcurrentHashMap的元素个数
s = sumCount();
}
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
// 如果元素个数大于等于了阈值或-1就自旋扩容
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
// resizeStamp这个方法太难理解,反正就是返回一个数字,比如n=16,rs则=32795
int rs = resizeStamp(n);
// 如果sc小于0,表示已经有其他线程在进行扩容了,sc+1
if (sc < 0) {
// 如果全部元素已经转移完了,或者已经达到了最大并发扩容数限制则breack
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
// 如果没有,则sizeCtl加1,然后进行转移元素
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
// 如果sc是大于0的并且如果修改sizeCtl为一个特定的值,比如n=16, rs << RESIZE_STAMP_SHIFT) + 2= -2145714174
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
// 转移元素,转移完了之后继续进入循环中
transfer(tab, null);
s = sumCount();
}
}
}
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
// stride表示步长,步长最小为16,如果CPU只有一核,那么步长为n
// 既如果只有一个cpu,那么只有一个线程来进行扩容
// 步长代表一个线程负责转移的桶的个数
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
// 新数组初始化,长度为两倍
if (nextTab == null) { // initiating
try {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
// 因为是两倍扩容,相当于两个老数组结合成了一个新数组,transferIndex表示第二个小数组的第一个元素的下标
transferIndex = n;
}
// 新数组的长度
int nextn = nextTab.length;
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
// advance为true时,当前桶是否已经迁移完成,如果迁移完成则开始处理下一个桶
boolean advance = true;
// 是否完成
boolean finishing = false; // to ensure sweep before committing nextTab
// 开始转移一个步长内的元素,i表示
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
while (advance) {
int nextIndex, nextBound;
// i先减1,如果减完之后小于bound,那么继续转移
if (--i >= bound || finishing)
advance = false;
// transferIndex
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
// 通过cas来修改TRANSFERINDEX,如果修改成功则对bound和i进行赋值
// 第一循环将进入到这里,来赋值bound和i
// nextIndex就是transferIndex,假设为16,假如步长为4,那么就分为4个组,每组4个桶
// 0-3,4-7,8-11,12-15
// nextBound = 16-4=12
// i=16-1=15
// 所以bound表示一个步长里的最小的下标,i表示一个步长里的最大下标
// TRANSFERINDEX是比较重要的,每个线程在进行元素的转移之前需要确定当前线程从哪个位置开始(从后往前)
// TRANSFERINDEX每次减掉一个步长,所以当下一个线程准备转移元素时就可以从最新的TRANSFERINDEX开始了
// 如果没有修改成功则继续循环
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
// i表示一个步长里的最大下标, 如果i小于或者大于等于老数组长度,或者下标+老数组长度大于等等新数组长度
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
// 转移完成
if (finishing) {
nextTable = null;
table = nextTab;
// sizeCtl = 1.5n = 2n*0.75
sizeCtl = (n << 1) - (n >>> 1);
return;
}
// 每个线程负责的转移任务结束后利用cas来对sizeCtl减1
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
// 当前线程负责的任务做完了,同时还有其他线程还在做任务,则回到上层重新申请任务来做
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
// 当前线程负责的任务做完了,也没有其他线程在做任务了,那么则表示扩容结束了
finishing = advance = true;
i = n; // recheck before commit
}
}
// 从i位置开始转移元素
// 如果老数组的i位置元素为null,则表示该位置上的元素已经被转移完成了,
// 则通过cas设置为ForwardingNode,表示无需转移
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
// 如果i位置已经是ForwardingNode,则跳过该位置(就是桶)
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
// 加锁,开始转移
synchronized (f) {
// 加锁完了之后再次检查一遍tab[i]是否发生了变化
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
// fh大于等于0表示是链表
if (fh >= 0) {
// n是老数组的长度
// 因为n是2的幂次方数,所以runbit只有两种结果:0和n
int runBit = fh & n;
// 遍历链表,lastRun为当前链表上runbit连续相同的一小段的最后一段
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
// 如果最后一段的runBit为0,则则该段应该保持在当前位置
// 否则应该设置到i+n位置
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
//从头节点开始,遍历链表到lastRun结束
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
// 如果ph & n,则将遍历到的节点插入到ln的前面
// 否则将遍历到的节点插入到hn的前面
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
// 将ln链表赋值在新tab的i位置
setTabAt(nextTab, i, ln);
// 将hn链表赋值在新tab的i+n位置
setTabAt(nextTab, i + n, hn);
// 这是老tab的i位置ForwardingNode节点,表示转移完成
setTabAt(tab, i, fwd);
advance = true;
}
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
private final void fullAddCount(long x, boolean wasUncontended) {
int h;
if ((h = ThreadLocalRandom.getProbe()) == 0) {
ThreadLocalRandom.localInit(); // force initialization
h = ThreadLocalRandom.getProbe();
wasUncontended = true;
}
boolean collide = false; // True if last slot nonempty
for (;;) {
CounterCell[] as; CounterCell a; int n; long v;
// 如果counterCells不等于空
if ((as = counterCells) != null && (n = as.length) > 0) {
// h可以理解为当前线程的hashcode,如果对应的counterCells数组下标位置元素当前是空的
// 那么则应该在该位置去生成一个CounterCell对象
if ((a = as[(n - 1) & h]) == null) {
// counterCells如果空闲
if (cellsBusy == 0) { // Try to attach new Cell
// 生成CounterCell对象
CounterCell r = new CounterCell(x); // Optimistic create
// 再次判断counterCells如果空闲,并且cas成功修改cellsBusy为1
if (cellsBusy == 0 &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
boolean created = false;
try { // Recheck under lock
CounterCell[] rs; int m, j;
// 如果counterCells对象没有发生变化,那么就将刚刚创建的CounterCell赋值到数组中
if ((rs = counterCells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
rs[j] = r;
// 便是CounterCell创建成功
created = true;
}
} finally {
cellsBusy = 0;
}
// 如果CounterCell创建成功,则退出循环,方法执行结束
if (created)
break;
// 如果没有创建成功,则继续循环
continue; // Slot is now non-empty
}
}
// 应该当前位置为空,所以肯定没有发生碰撞
collide = false;
}
// 如果当前位置不为空,则进入以下分支判断
// 如果调用当前方法之前cas失败了,那么先将wasUncontended设置为true,
else if (!wasUncontended) // CAS already known to fail
wasUncontended = true; // Continue after rehash
// 通过cas修改CELLVALUE的值,修改成功则退出循环,修改失败则继续进行分支判断
else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
break;
// counterCells发生了改变,或者当前counterCells数组的大小大于等于CPU核心数,设置collide为false,
// 如果到了这个极限,counterCells不会再进行扩容了
else if (counterCells != as || n >= NCPU)
collide = false; // At max size or stale
// 一旦走到这个分支了,那么就是发生了碰撞了,一个当前这个位置不为空
else if (!collide)
collide = true;
// 当collide为true进入这个分支,表示发生了碰撞会进行扩容
else if (cellsBusy == 0 &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
try {
// 对counterCells进行扩容
if (counterCells == as) {// Expand table unless stale
CounterCell[] rs = new CounterCell[n << 1];
for (int i = 0; i < n; ++i)
rs[i] = as[i];
counterCells = rs;
}
} finally {
cellsBusy = 0;
}
collide = false;
continue; // Retry with expanded table
}
// 重新进行hash
h = ThreadLocalRandom.advanceProbe(h);
}
// 如果counterCells等于空的情况下会走下面两个分支
// cellsBusy == 0表示counterCells没有线程在用
// 如果counterCells空闲,并且当前线程所获得counterCells对象没有发生变化
// 先通过CAS将cellsBusy标记改为1,如果修改成功则证明可以操作counterCells了,
// 其他线程暂时不能使用counterCells
else if (cellsBusy == 0 && counterCells == as &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
boolean init = false;
try { // Initialize table
// cellsBusy标记改成后就初始化CounterCell[]
if (counterCells == as) {
CounterCell[] rs = new CounterCell[2];
// 并且把x赋值到CounterCell中完成计数
rs[h & 1] = new CounterCell(x);
counterCells = rs;
init = true;
}
} finally {
cellsBusy = 0;
}
// 如果没有初始化成功,则证明counterCells发生了变化,当前线程修改cellsBusy的过程中,
// 可能其他线程已经把counterCells对象替换掉了
// 如果初始化成功,则退出循环,方法执行结束
if (init)
break;
}
else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
break; // Fall back on using base
}
}
sizeCtl默认等于0或者用户设置的数组初始容量
在初始化map的时候会先减1,初始化完成之后就会被设置为扩容的阈值
当map的元素数量大于等于扩容的阈值之后就会进行循环扩容:
第一个线程扩容时会把sizeCtl修改为一个很大的负数,然后开始转移元素,如果在这个线程扩容的过程中有其他线程也来帮助扩容了,那么sizeCtl就会加1,如果某个线程扩容结束后就会减1,每个线程减完1之后都判断一下sizeCtl是否不等于之前很大的负数,如果等于则表示当前线程时扩容的最后一个线程了,那么完成map属性的赋值工作,如果不等于并且又没有其他转移任务要做了,那么则退出转移方法,退出之后