红黑树分析与JDK8中HashMap源码解析

11 篇文章 1 订阅
1 篇文章 0 订阅

BST

二叉查找树(Binary Search Tree,简称BST)是一棵二叉树,它的左子节点的值比父节点的值要小,右节点的值要比父节点的值大。它的高度决定了它的查找效率。

在理想的情况下,二叉查找树增删查改的时间复杂度为O(logN)(其中N为节点数),最坏的情况下为O(N)。

BST存在倾斜的问题
平衡的BST:
在这里插入图片描述
倾斜的BST:
在这里插入图片描述

public class BstTest {

    static class Node {
        public String content;
        public Node parent;
        public Node left;
        public Node right;

        public Node(String content) {
            this.content = content;
        }
    }

    public Node root;

    // BST的查找操作

    public Node search (String content) {
        Node r = root;
        while (r != null) {
            if (r.content.equals(content)) {
                return r;
            } else if (content.compareTo(r.content) > 1) {
                r = r.right;
            } else if (content.compareTo(r.content) <= 1) {
                r = r.left;
            }
        }

        return null;
    }

    // BST的插入操作
    public void insert (String content) {
        Node newNode = new Node(content);
        Node r = root;
        Node parent = null;

        if (r == null) {
            root = newNode;
            return;
        }

        while (r != null) {
            parent = r;
            if (newNode.content.compareTo(r.content) > 1) {
                r = r.right;
            } else if (newNode.content.compareTo(r.content) < 1){
                r = r.left;
            } else {
                r = r.left;
            }
        }

        if (parent.content.compareTo(newNode.content) > 1) {
            parent.left = newNode;
            newNode.parent = parent;
        } else {
            parent.right = newNode;
            newNode.parent = parent;
        }
    }
}

O(1), O(n), O(logn), O(nlogn) 的区别

在描述算法复杂度时,经常用到O(1), O(n), O(logn), O(nlogn)来表示对应复杂度程度, 不过目前大家默认也通过这几个方式表示空间复杂度 。

那么,O(1), O(n), O(logn), O(nlogn)就可以看作既可表示算法复杂度,也可以表示空间复杂度。

大O加上()的形式,里面其实包裹的是一个函数f(),O(f()),指明某个算法的耗时/耗空间与数据增长量之间的关系。其中的n代表输入数据的量。

在这里插入图片描述

如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

在这里插入图片描述

红黑树-RBTree

基于BST存在的问题,一种新的树——平衡二叉查找树(Balanced BST)产生了。平衡树在插入和删除的时候,会通过旋转操作将高度保持在logN。其中两款具有代表性的平衡树分别为AVL树和红黑树。AVL树由于实现比较复杂,而且插入和删除性能差,在实际环境下的应用不如红黑树。

红黑树(Red-Black Tree,以下简称RBTree)的实际应用非常广泛,比如Linux内核中的完全公平调度器、高精度计时器、ext3文件系统等等,各种语言的函数库如Java的TreeMap和TreeSet,C++ STL的map、multimap、multiset等。

RBTree也是函数式语言中最常用的持久数据结构之一,在计算几何中也有重要作用。值得一提的是,Java 8中HashMap的实现也因为用RBTree取代链表,性能有所提升。

《算法导论》中对于红黑树的定义如下:

  1. 每个结点或是红的,或是黑的
  2. 根节点是黑的
  3. 每个叶结点是黑的
  4. 如果一个结点是红的,则它的两个儿子都是黑的
  5. 对每个结点,从该结点到其子孙节点的所有路径上包含相同数目的黑结点

对与第4点,网上有些定义是:父子节点之间不能出现两个连续的红节点,这种定义和《算法导论》中定义的效果是一样的

RBTree在理论上还是一棵BST树,但是它在对BST的插入和删除操作时会维持树的平衡,即保证树的高度在[logN,logN+1](理论上,极端的情况下可以出现RBTree的高度达到2*logN,但实际上很难遇到)。这样RBTree的查找时间复杂度始终保持在O(logN)从而接近于理想的BST。RBTree的删除和插入操作的时间复杂度也是O(logN)。RBTree的查找操作就是BST的查找操作。

插入数据

向红黑树中插入新的结点。具体做法是,将新结点的 color 赋为红色,然后以BST的插入方法插入到红黑树中去。之所以将新插入的结点的颜色赋为红色,是因为:如果设为黑色,就会导致根到叶子的路径上有一条路上,多一个额外的黑结点,这个是很难调整的。但是设为红色结点后,可能会导致出现两个连续红色结点的冲突,那么可以通过颜色调换和树旋转来调整,这样简单多了。

接下来,讨论一下插入以后,红黑树的情况。设要插入的结点为N,其父结点为P,其 祖父结点为G,其父亲的兄弟结点为U(即P和U 是同一个结点的两个子结点)。如果P是黑色的,则整棵树不必调整就已经满足了红黑树的所有性质。如果P是红色的(可知,其父结点G一定是黑色的),则插入N后,违背了红色结点只能有黑色孩子的性质,需要进行调整。

调整时分以下三种情况:
新结点N的叔叔结点U是红色的
处理方式是:将P和U修改为黑色,G修改为红色

现在新结点N有了一个黑色的父结点P,因为通过父结点P或叔父结点U的任何路径都必定通过祖父结点G,在这些路径上的黑结点数目没有改变。

但是,红色的祖父结点G的父结点也有可能是红色的,这就违反了性质3。为了解决这个问题,我们从祖父结点G开始递归向上调整颜色。如图2

在这里插入图片描述

新结点N的叔叔结点U是黑色的,且N是左孩子。
处理方式:对祖父结点G进行一次右旋转

在旋转后产生的树中,以前的父结点P现在是新结点N和以前的祖父节点G的父结点,然后交换以前的父结点P和祖父结点G的颜色,结果仍满足红黑树性质。如图 2.15。在(b)中,虚线代表原来的指针,实线代表旋转过后的指针。所谓旋转就是改变图中所示的两个指针的值即可。当然,在实际应用中,还有父指针p也需要修改,这里为了图示的简洁而省略掉了。

在这里插入图片描述
新结点N的叔叔结点U是黑色的,且N是右孩子
处理方式:对P进行一次左旋转,就把问题转化成了第二种情况。如图 2.16所示。

在这里插入图片描述
红黑树插入数据的代码与二叉查找树是相同的,只是在插入以后,会对不满足红黑树性质的结点进行调整。

HashMap中红黑树的插入操作

static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
                                            TreeNode<K,V> x) {
	// 新节点默认为红色
    x.red = true;
    // xp表示x的父结点,xpp表示x的祖父结点,xppl表示xpp的左孩子结点,xppr表示xpp的右孩子结点
    for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
        // 如果x没有父结点,则表示x是第一个结点,自动为根节点,根节点为黑色
        if ((xp = x.parent) == null) {
            x.red = false;
            return x;
        }
        // 如果父结点不是红色(就是黑色),或者x没有祖父节点,那么就证明x是第二层节点,父节点为根节点
        // 这种情况无需就行操作
        else if (!xp.red || (xpp = xp.parent) == null)
            return root;
        
        // 进入到这里,表示x的父节点为红色
        
        // 如果x的父节点是祖父结点的左孩子
        if (xp == (xppl = xpp.left)) {
            // 祖父结点的右孩子,也就是x的叔叔节点不为空,且为红色
            if ((xppr = xpp.right) != null && xppr.red) {
                // 父节点和叔叔节点都为红色,只需要变色,且将x替换为祖父节点然后进行递归
                xppr.red = false;
                xp.red = false;
                xpp.red = true;
                x = xpp;
            }
            // 如果叔叔节点为空,或者为黑色
            else {
                // 如果x节点为xp的右孩子
                if (x == xp.right) {
                    // 先进行左旋,并且把x替换为xp进行递归,在左旋的过程中产生了新的root节点
                    root = rotateLeft(root, x = xp);
                    // x替换后,修改xp和xpp
                    xpp = (xp = x.parent) == null ? null : xp.parent;
                }
                // 如果x本来是左孩子,或者已经经过了上面的左旋之后,进行变色加右旋
                if (xp != null) {
                    xp.red = false;
                    if (xpp != null) {
                        xpp.red = true;
                        root = rotateRight(root, xpp);
                    }
                }
            }
        }
        // 如果x的父节点是祖父结点的右孩子
        else {
            if (xppl != null && xppl.red) {
                xppl.red = false;
                xp.red = false;
                xpp.red = true;
                x = xpp;
            }
            else {
                if (x == xp.left) {
                    root = rotateRight(root, x = xp);
                    xpp = (xp = x.parent) == null ? null : xp.parent;
                }
                if (xp != null) {
                    xp.red = false;
                    if (xpp != null) {
                        xpp.red = true;
                        root = rotateLeft(root, xpp);
                    }
                }
            }
        }
    }
}

HashMap中红黑树的左右旋操作

static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
                                      TreeNode<K,V> p) {
    // pp是祖父结点
    // p是待旋转结点
    // r是p的右孩子结点
    // rl是r的左孩子结点
    TreeNode<K,V> r, pp, rl;
    if (p != null && (r = p.right) != null) {
        // 如果rl不为空,则设置p.right=rl
        if ((rl = p.right = r.left) != null)
            rl.parent = p;
        // 如果祖父结点为null,那么r设置为黑色,r左旋之后即为root节点
        if ((pp = r.parent = p.parent) == null)
            (root = r).red = false;
        // 如果待旋转结点是左孩子节点
        else if (pp.left == p)
            pp.left = r;
        // 如果待旋转结点为右孩子
        else
            pp.right = r;
        r.left = p;
        p.parent = r;
    }
    return root;
}

static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
                                       TreeNode<K,V> p) {
    TreeNode<K,V> l, pp, lr;
    if (p != null && (l = p.left) != null) {
        if ((lr = p.left = l.right) != null)
            lr.parent = p;
        if ((pp = l.parent = p.parent) == null)
            (root = l).red = false;
        else if (pp.right == p)
            pp.right = l;
        else
            pp.left = l;
        l.right = p;
        p.parent = l;
    }
    return root;
}

HashMap中的树化

final void treeify(Node<K,V>[] tab) {
    TreeNode<K,V> root = null;
    // 遍历当前链表
    for (TreeNode<K,V> x = this, next; x != null; x = next) {
        next = (TreeNode<K,V>)x.next;
        x.left = x.right = null;
        if (root == null) {
            x.parent = null;
            x.red = false;
            root = x;
        }
        else {
            K k = x.key;
            int h = x.hash;
            Class<?> kc = null;
            // 每遍历一个链表上的元素就插入到红黑树中
            for (TreeNode<K,V> p = root;;) {
                int dir, ph;
                K pk = p.key;
                
                // 判断待插入结点应该插入在左子树还是右子树
                // 先比较hash值
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                // 如果hash值相等,然后比较k.compareTo(pk)
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0)
                    // 如果还相等则再比较identityHashCode
                    dir = tieBreakOrder(k, pk);

                // 根据dir的值就知道了待插入结点该插在左子树还是右子树了
                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    x.parent = xp;
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    root = balanceInsertion(root, x);
                    break;
                }
            }
        }
    }
    moveRootToFront(tab, root);
}

JDK1.8中的ConcurrentHashMap源码分析

final V putVal(K key, V value, boolean onlyIfAbsent) {
    // key和value不能为NULL
    if (key == null || value == null) throw new NullPointerException();
    
    // key所对应的hashcode
    int hash = spread(key.hashCode());
    int binCount = 0;
    
    // 通过自旋的方式来插入数据
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        // 如果数组为空,则初始化
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        // 算出数组下标,然后获取数组上对应下标的元素,如果为null,则通过cas来赋值
        // 如果赋值成功,则退出自旋,否则是因为数组上当前位置已经被其他线程赋值了,
        // 所以失败,所以进入下一次循环后就不会再符合这个判断了
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            if (casTabAt(tab, i, null,
                         new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        // 如果数组当前位置的元素的hash值等于MOVED,表示正在进行扩容,当前线程也进行扩容
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            // 对数组当前位置的元素进行加锁
            synchronized (f) {
                // 加锁后检查一下tab[i]上的元素是否发生了变化,如果发生了变化则直接进入下一次循环
                // 如果没有发生变化,则开始插入新key,value
                if (tabAt(tab, i) == f) {
                    // 如果tab[i]的hashcode是大于等于0的,那么就将元素插入到链表尾部
                    if (fh >= 0) {
                        binCount = 1; // binCount表示当前链表上节点的个数,不包括新节点
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            // 遍历链表的过程中比较key是否存在一样的
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node<K,V> pred = e;
                            // 插入到尾节点
                            if ((e = e.next) == null) {
                                pred.next = new Node<K,V>(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    // 如果tab[i]是TreeBin类型,表示tab[i]位置是一颗红黑树
                    else if (f instanceof TreeBin) {
                        Node<K,V> p;
                        binCount = 2;
                        if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            if (binCount != 0) {
                // 在新插入元素的时候,如果不算这个新元素链表上的个数大于等于8了,那么就要进行树化
                // 比如binCount为8,那么此时tab[i]上的链表长度为9,因为包括了新元素
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                // 存在key相同的元素
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    addCount(1L, binCount);
    return null;
}
// 初始化数组
// 一个线程在put时如果发现tab是空的,则需要进行初始化
private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
        // sizeCtl默认等于0,如果为-1表示有其他线程正在进行初始化,本线程不竞争CPU
        // yield表示放弃CPU,线程重新进入就绪状态,重新竞争CPU,如果竞争不到就等,如果竞争到了又继续循环
        if ((sc = sizeCtl) < 0)
            Thread.yield(); // lost initialization race; just spin
        // 通过cas将sizeCtl改为-1,如果改成功了则进行后续操作
        // 如果没有成功,则表示有其他线程在进行初始化或已经把数组初始化好了
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                // 当前线程将sizeCtl改为-1后,再一次判断数组是否为空
                // 会不会存在一个线程进入到此处之后,数组不为空了?
                if ((tab = table) == null || tab.length == 0) {
                    // 如果在构造ConcurrentHashMap时指定了数组初始容量,那么sizeCtl就为初始化容量
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    // 如果n为16,那么就是16-4=12
                    // sc = 3*n/4 = 0.75n, 初始化完成后sizeCtl的数字表示扩容的阈值
                    sc = n - (n >>> 2);
                }
            } finally {
                // 此时sc为阈值
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}
private final void addCount(long x, int check) {
    // 先通过CAS更新baseCount(+1)
    // 如果更新失败则通过CAS更新CELLVALUE
    // 如果仍然失败则调用fullAddCount
    
    // as是一个CounterCell数组,一个CounterCell对象表示一个计数器,
    // 多个线程在添加元素时,手写都会尝试去更新baseCount,那么只有一个线程能更新成功,另外的线程将更新失败
    // 那么其他的线程就利用一个CounterCell对象来记一下数
    CounterCell[] as; long b, s;
     
    //
    if ((as = counterCells) != null ||
        !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
        // 某个线程更新baseCount失败了
        CounterCell a; long v; int m;
        boolean uncontended = true;
        // 如果CounterCell[]是null
        // 或者CounterCell[]不为null的情况下CounterCell[]的长度小于1也就是等于0,
        // 或者CounterCell[]长度不为0的情况下随机计算一个CounterCell[]的下标,并判断此下标位置是否为空
        // 或者CounterCell[]中的某下标位置不为null的情况下通过cas修改CounterCell中的值失败了
        // 才调用fullAddCount方法,然后返回
        if (as == null || (m = as.length - 1) < 0 ||
            (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
            !(uncontended =
              U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
            fullAddCount(x, uncontended);
            return;
        }
        // 如果修改CELLVALUE成功了,这里的check就是binCount,这里为什么要判断小于等于1
        if (check <= 1)
            return;
        
        // 如果修改CELLVALUE成功了,则统计ConcurrentHashMap的元素个数
        s = sumCount();
    }
    if (check >= 0) {
        Node<K,V>[] tab, nt; int n, sc;
        
        // 如果元素个数大于等于了阈值或-1就自旋扩容
        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
               (n = tab.length) < MAXIMUM_CAPACITY) {
            // resizeStamp这个方法太难理解,反正就是返回一个数字,比如n=16,rs则=32795
            int rs = resizeStamp(n);
            // 如果sc小于0,表示已经有其他线程在进行扩容了,sc+1
            if (sc < 0) {
                // 如果全部元素已经转移完了,或者已经达到了最大并发扩容数限制则breack
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                // 如果没有,则sizeCtl加1,然后进行转移元素
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            // 如果sc是大于0的并且如果修改sizeCtl为一个特定的值,比如n=16, rs << RESIZE_STAMP_SHIFT) + 2= -2145714174
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                // 转移元素,转移完了之后继续进入循环中
                transfer(tab, null);
            s = sumCount();
        }
    }
}
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    int n = tab.length, stride;
    
    // stride表示步长,步长最小为16,如果CPU只有一核,那么步长为n
    // 既如果只有一个cpu,那么只有一个线程来进行扩容
    // 步长代表一个线程负责转移的桶的个数
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; // subdivide range
    
    // 新数组初始化,长度为两倍
    if (nextTab == null) {            // initiating
        try {
            @SuppressWarnings("unchecked")
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        nextTable = nextTab;
        // 因为是两倍扩容,相当于两个老数组结合成了一个新数组,transferIndex表示第二个小数组的第一个元素的下标
        transferIndex = n;
    }
    // 新数组的长度
    int nextn = nextTab.length;
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
    
    // advance为true时,当前桶是否已经迁移完成,如果迁移完成则开始处理下一个桶
    boolean advance = true;
    // 是否完成
    boolean finishing = false; // to ensure sweep before committing nextTab
    
    // 开始转移一个步长内的元素,i表示
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;
        while (advance) {
            int nextIndex, nextBound;
            // i先减1,如果减完之后小于bound,那么继续转移
            if (--i >= bound || finishing)
                advance = false;
            // transferIndex
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            // 通过cas来修改TRANSFERINDEX,如果修改成功则对bound和i进行赋值
            // 第一循环将进入到这里,来赋值bound和i
            // nextIndex就是transferIndex,假设为16,假如步长为4,那么就分为4个组,每组4个桶
            // 0-3,4-7,8-11,12-15
            // nextBound = 16-4=12
            // i=16-1=15
            // 所以bound表示一个步长里的最小的下标,i表示一个步长里的最大下标
            // TRANSFERINDEX是比较重要的,每个线程在进行元素的转移之前需要确定当前线程从哪个位置开始(从后往前)
            // TRANSFERINDEX每次减掉一个步长,所以当下一个线程准备转移元素时就可以从最新的TRANSFERINDEX开始了
            
            // 如果没有修改成功则继续循环
            else if (U.compareAndSwapInt
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
                bound = nextBound;
                i = nextIndex - 1;
                advance = false;
            }
        }
        // i表示一个步长里的最大下标, 如果i小于或者大于等于老数组长度,或者下标+老数组长度大于等等新数组长度
        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            // 转移完成
            if (finishing) {
                nextTable = null;
                table = nextTab;
                // sizeCtl = 1.5n  = 2n*0.75
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
            // 每个线程负责的转移任务结束后利用cas来对sizeCtl减1
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                // 当前线程负责的任务做完了,同时还有其他线程还在做任务,则回到上层重新申请任务来做
                if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    return;
                // 当前线程负责的任务做完了,也没有其他线程在做任务了,那么则表示扩容结束了
                finishing = advance = true;
                i = n; // recheck before commit
            }
        }
        // 从i位置开始转移元素
        // 如果老数组的i位置元素为null,则表示该位置上的元素已经被转移完成了,
        // 则通过cas设置为ForwardingNode,表示无需转移
        else if ((f = tabAt(tab, i)) == null)
            advance = casTabAt(tab, i, null, fwd);
        // 如果i位置已经是ForwardingNode,则跳过该位置(就是桶)
        else if ((fh = f.hash) == MOVED)
            advance = true; // already processed
        else {
            // 加锁,开始转移
            synchronized (f) {
                // 加锁完了之后再次检查一遍tab[i]是否发生了变化
                if (tabAt(tab, i) == f) {
                    Node<K,V> ln, hn;
                    // fh大于等于0表示是链表
                    if (fh >= 0) {
                        // n是老数组的长度
                        // 因为n是2的幂次方数,所以runbit只有两种结果:0和n
                        int runBit = fh & n;
                        
                        // 遍历链表,lastRun为当前链表上runbit连续相同的一小段的最后一段
                        Node<K,V> lastRun = f;
                        for (Node<K,V> p = f.next; p != null; p = p.next) {
                            int b = p.hash & n;
                            if (b != runBit) {
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        
                        // 如果最后一段的runBit为0,则则该段应该保持在当前位置
                        // 否则应该设置到i+n位置
                        if (runBit == 0) {
                            ln = lastRun;
                            hn = null;
                        }
                        else {
                            hn = lastRun;
                            ln = null;
                        }
                        //从头节点开始,遍历链表到lastRun结束
                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            // 如果ph & n,则将遍历到的节点插入到ln的前面
                            // 否则将遍历到的节点插入到hn的前面
                            if ((ph & n) == 0)
                                ln = new Node<K,V>(ph, pk, pv, ln);
                            else
                                hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        // 将ln链表赋值在新tab的i位置
                        setTabAt(nextTab, i, ln);
                        // 将hn链表赋值在新tab的i+n位置
                        setTabAt(nextTab, i + n, hn);
                        // 这是老tab的i位置ForwardingNode节点,表示转移完成
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                    else if (f instanceof TreeBin) {
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> lo = null, loTail = null;
                        TreeNode<K,V> hi = null, hiTail = null;
                        int lc = 0, hc = 0;
                        for (Node<K,V> e = t.first; e != null; e = e.next) {
                            int h = e.hash;
                            TreeNode<K,V> p = new TreeNode<K,V>
                                (h, e.key, e.val, null, null);
                            if ((h & n) == 0) {
                                if ((p.prev = loTail) == null)
                                    lo = p;
                                else
                                    loTail.next = p;
                                loTail = p;
                                ++lc;
                            }
                            else {
                                if ((p.prev = hiTail) == null)
                                    hi = p;
                                else
                                    hiTail.next = p;
                                hiTail = p;
                                ++hc;
                            }
                        }
                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                            (hc != 0) ? new TreeBin<K,V>(lo) : t;
                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                            (lc != 0) ? new TreeBin<K,V>(hi) : t;
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                }
            }
        }
    }
}
private final void fullAddCount(long x, boolean wasUncontended) {
    int h;
    if ((h = ThreadLocalRandom.getProbe()) == 0) {
        ThreadLocalRandom.localInit();      // force initialization
        h = ThreadLocalRandom.getProbe();
        wasUncontended = true;
    }
    
    boolean collide = false;                // True if last slot nonempty
    for (;;) {
        CounterCell[] as; CounterCell a; int n; long v;
        
        // 如果counterCells不等于空
        if ((as = counterCells) != null && (n = as.length) > 0) {
            // h可以理解为当前线程的hashcode,如果对应的counterCells数组下标位置元素当前是空的
            // 那么则应该在该位置去生成一个CounterCell对象
            if ((a = as[(n - 1) & h]) == null) {
                // counterCells如果空闲
                if (cellsBusy == 0) {            // Try to attach new Cell
                    // 生成CounterCell对象
                    CounterCell r = new CounterCell(x); // Optimistic create
                    // 再次判断counterCells如果空闲,并且cas成功修改cellsBusy为1
                    if (cellsBusy == 0 &&
                        U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                        boolean created = false;
                        try {               // Recheck under lock
                            CounterCell[] rs; int m, j;
                            // 如果counterCells对象没有发生变化,那么就将刚刚创建的CounterCell赋值到数组中
                            if ((rs = counterCells) != null &&
                                (m = rs.length) > 0 &&
                                rs[j = (m - 1) & h] == null) {
                                rs[j] = r;
                                // 便是CounterCell创建成功
                                created = true;
                            }
                        } finally {
                            cellsBusy = 0;
                        }
                        // 如果CounterCell创建成功,则退出循环,方法执行结束
                        if (created)
                            break;
                        
                        // 如果没有创建成功,则继续循环
                        continue;           // Slot is now non-empty
                    }
                }
                
                // 应该当前位置为空,所以肯定没有发生碰撞
                collide = false;
            }
            // 如果当前位置不为空,则进入以下分支判断
            
            // 如果调用当前方法之前cas失败了,那么先将wasUncontended设置为true,
            else if (!wasUncontended)       // CAS already known to fail
                wasUncontended = true;      // Continue after rehash
            // 通过cas修改CELLVALUE的值,修改成功则退出循环,修改失败则继续进行分支判断
            else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
                break;
            // counterCells发生了改变,或者当前counterCells数组的大小大于等于CPU核心数,设置collide为false,
            // 如果到了这个极限,counterCells不会再进行扩容了
            else if (counterCells != as || n >= NCPU)
                collide = false;            // At max size or stale
            // 一旦走到这个分支了,那么就是发生了碰撞了,一个当前这个位置不为空
            else if (!collide)
                collide = true;
            // 当collide为true进入这个分支,表示发生了碰撞会进行扩容
            else if (cellsBusy == 0 &&
                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
                try {
                    // 对counterCells进行扩容
                    if (counterCells == as) {// Expand table unless stale
                        CounterCell[] rs = new CounterCell[n << 1];
                        for (int i = 0; i < n; ++i)
                            rs[i] = as[i];
                        counterCells = rs;
                    }
                } finally {
                    cellsBusy = 0;
                }
                collide = false;
                continue;                   // Retry with expanded table
            }
            // 重新进行hash
            h = ThreadLocalRandom.advanceProbe(h);
        }
        // 如果counterCells等于空的情况下会走下面两个分支
        
        // cellsBusy == 0表示counterCells没有线程在用
        // 如果counterCells空闲,并且当前线程所获得counterCells对象没有发生变化
        // 先通过CAS将cellsBusy标记改为1,如果修改成功则证明可以操作counterCells了,
        // 其他线程暂时不能使用counterCells
        else if (cellsBusy == 0 && counterCells == as &&
                 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
            boolean init = false;
            try {                           // Initialize table
                // cellsBusy标记改成后就初始化CounterCell[]
                if (counterCells == as) {
                    CounterCell[] rs = new CounterCell[2];
                    // 并且把x赋值到CounterCell中完成计数
                    rs[h & 1] = new CounterCell(x);
                    counterCells = rs;
                    init = true;
                }
            } finally {
                cellsBusy = 0;
            }
            // 如果没有初始化成功,则证明counterCells发生了变化,当前线程修改cellsBusy的过程中,
            // 可能其他线程已经把counterCells对象替换掉了
            // 如果初始化成功,则退出循环,方法执行结束
            if (init)
                break;
        }
        else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
            break;                          // Fall back on using base
    }
}

sizeCtl默认等于0或者用户设置的数组初始容量
在初始化map的时候会先减1,初始化完成之后就会被设置为扩容的阈值
当map的元素数量大于等于扩容的阈值之后就会进行循环扩容:
第一个线程扩容时会把sizeCtl修改为一个很大的负数,然后开始转移元素,如果在这个线程扩容的过程中有其他线程也来帮助扩容了,那么sizeCtl就会加1,如果某个线程扩容结束后就会减1,每个线程减完1之后都判断一下sizeCtl是否不等于之前很大的负数,如果等于则表示当前线程时扩容的最后一个线程了,那么完成map属性的赋值工作,如果不等于并且又没有其他转移任务要做了,那么则退出转移方法,退出之后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值