- 博客(21)
- 收藏
- 关注
原创 使用python计算AI天气预报中的ACC(异常相关系数,距平相关系数,Anomaly Correlation Coefficient)
通过计算预报与观测之间的相关性,来衡量预报系统质量。由于季节变化,直接将预报与观测或分析相关联可能会给出误导性的高值。因此,通常的做法是从预报和验证中减去气候平均值,并根据异常相关系数(ACC)来验证预报和观测的异常。ACCf−ca−c‾f−c‾2a−c‾2ACCf−c2a−c2f−ca−c其中,fff代表预测值,aaa为ground truth,ccc为气候态climatology。
2024-10-23 11:08:31 908
原创 ERA5数据 google云存储下载方法大全
ERA5官网然而,目前ERA5服务器连接过于繁忙,并且国内连接速度相当有限,因此从ERA5官网下载这些数据会非常慢。幸运的是,谷歌在研发graphcast的过程中,下载了1940-2022年的ERA5数据,并且存储在了中。同时,也提供了很多数据,但是是以zarr的方式存储。本文将详细阐述如何下载并使用这些数据,包括气候态、气象变量等数据。
2024-05-24 22:18:11 1621 1
原创 WRF3.9简易编译攻略
WRF全称Weather Research and Forecasting Model, 是一个天气研究与预报模型。整个系统包括WPS模块和WRF模块。WPS(WRF Preprocessing System),即WRF预处理系统,是为WRF模式准备输入数据的模块。
2023-09-25 22:36:44 479 1
原创 文章解析——UGSCNN: Spherical CNNs on Unstructured Grids
paper地址作者github地址其中x和y指的是空间坐标,对应于执行卷积的两个空间维度。由于互相关算子(∗)的线性,输出特征图可以表示为与不同基函数互相关的输入函数的线性组合。定义线性算子∆ij为具有基delta函数的互相关函数,有:我们将互相关线性算子∆ij替换为变阶微分算子。与通过基函数互相关得到的线性算子类似,微分算子是线性的,近似于局部特征。与流形上的互相关(cross-correlations)不同,网格上的微分算子可以利用有限元基或离散外演算来高效地计算。
2023-09-12 10:18:38 554 1
原创 linux 安装pyigl
pyigl是libigl的python版本,在2020年后已经被igl模块取代然而大量的老代码其实用的还是pyigl,尤其是涉及到eigen等老子模块调用的代码,需要用numpy的方法来替代,代价极大,这里记录一下如何安装老的pyigl。
2023-09-11 20:42:06 402
原创 MPI分析程序Integrated Performance Monitoring for HPC(IPM)安装指南
高性能计算集成性能监控Integrated Performance Monitoring for HPC(IPM) 是专门针对MPI程序设计的通信与性能监测器,该monitor除了可以查看每个函数的运行时间以外,还可以查看每个通信函数的时间,是用于MPI程序调优的开源利器。
2023-05-16 20:15:00 1351 5
原创 CESM2.1.3 算例名称
CESM(Community Earth System Model)是一个完全耦合的地球系统的数值模拟,由大气、海洋、冰、陆地表面、碳循环和其他组成部分组成。CESM 包括一个气候模型,提供地球过去、现在和未来的模拟。CESM 是 CCSM 的升级版,2010年,国家科学基金会(NSF)和美国能源部(DoE)的重要资金(NSF)和重要资金的全球动力学部门(CGD)在2010年发布了 CESM1,2018年发布了CESM2。
2023-05-01 13:09:53 543 3
原创 论文阅读Optimizing Task Placement and Online Scheduling for Distributed GNN Training Acceleration
分布式GNN的一篇优化工作,香港大学的工作,2022年的infocomm
2023-04-24 21:54:18 434 3
原创 关于cesm1.2.1运行profiling的一些小观察
作为高性能计算的典型应用,CESM运行时复杂性可谓首屈一指,由于其多模块、周期性的特点,使得相关的优化工作都很有针对性,博主特意测试了cesm的一些性能指标,作为观察现象,为一些优化工作提出一些参考CESM程序特性表现为第一个模拟天的计算需要从读取小规模输入数据开始计算,然后进行多次迭代,每轮迭代过程均高度相似,每一轮迭代均由mpi_barrier函数进行同步启动与结束,这一点也表现在缓存命中与访寸上,主要使用内存进行计算,中间不生成任何中间数据,在最后一次性写入后端存储设备中。
2023-04-24 10:11:11 425 3
原创 论文阅读TLPGNN: A Lightweight Two-Level Parallelism Paradigm for Graph Neural Network Computation on GPU
对HPDC2022一篇论文的理解,其中对于一个warp处理一个节点,以及避免原子操作等做法是优化的关键
2023-04-15 22:50:10 424 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人