目录
参考学习:Signal Generation and Preprocessing
本人只是为了了解信号处理的基础知识而做的学习笔记,涉及深度可能不够,有理解错误的地方请大胆指出,感激不尽
一、信号生成和预处理
(一)信号生成
从数据中去除噪声、离群值和乱真内容。增强信号以对其可视化并发现模式。更改信号的采样率,或者使不规则采样信号或带缺失数据信号的采样率趋于恒定。为仿真和算法测试生成脉冲信号和 chirp 等合成信号。主要分为以下几个步骤
1.创建波形
1.1周期波形Periodic Waveforms
- sawtooth(T) 锯齿或三角波
- quare(T)函数产生一个2*pi为周期的方波
1.2 非周期波形Aperiodic Waveforms
1.3 扫频波形Swept-Frequency Waveforms
1.4 脉冲序列Pulse Trains
(二)信号预处理
1. 平滑去噪
- 从信号中去除不需要的峰值、趋势和离群值。使用 Savitzky-Golay 滤波器、移动平均值、移动中位数、线性回归或二次回归对信号进行平滑处理。
1.1 去峰值
1.2 离群值
- filloutliers 检测并替换数据中的离群值
- isoutlier 查找数据中的离群值
1.3 去趋势remove trend
参考学习:对数据去趋势
-
信号的基线发生了偏移,有的是线性偏移,有的是非线性偏移,处理方式不一样
-
线性的处理,使用函数detrend
dt_ecgl = detrend(ecgl);
- 非线性的,对信号进行低阶多项式拟合并减去它
opol = 6;%多项式为6阶
[p,s,mu] = polyfit(t,ecgnl,opol);
f_y = polyval(p,t,[],mu);
dt_ecgnl = ecgnl - f_y;
处理后
- 案例执行:openExample(‘signal/RemoveInstrumentDriftFromMeasurementsExample’)
2. 重采样
- 重采样分为上采样和下采样,下采样时需要对信号进行抽取,上采样时需要对信号进行插值
- 减少抽样率以去掉过多数据的过程称为信号的抽取(decimatim )”,增加抽样率以增加数据的过程称为信号的“插值(interpolation)。
- resample 函数将序列的采样率更改为与原始采样率成一定比例的采样率
- 信号重采样的函数
2.1 重采样的函数
- 应用带重采样的 FIR 滤波器
upfirdn - 三次样条插值
spline - 抽取
decimate - 插值
interp - 其他一维插值
interp1 - 以新采样率重采样
resample
二、测量和特征提取
(一)测量和提取的因子
1. 描述性统计量
- 峰值
- RMS 水平
- 峰间幅值
- 波峰因子
- 动态时间畸变
- CUSUM 控制图
- 编辑距离
2. 脉冲和转换指标
- 上升时间
- 下降时间
- 压摆率
- 过冲就
- 欠冲
- 稳定时间
- 脉冲宽度
- 占空比
3. 频谱测量
- 通道功率
- 带宽
- 均值频率
- 中位数频率
- 谐波失真
三、相关性和卷积
(一)目的
利用相关性和卷积函数,用于检测信号相似性。确定周期性,找到隐藏在长数据记录中的感兴趣的信号,并测量信号之间的延迟以同步它们
(二)常见应用
- 在测量中找到信号
确定一个信号是否与一段较长的噪声数据流相匹配。 - 对齐两个简单信号
学会使用互相关来对齐不同长度的信号。 - 将信号与不同开始时间对齐
同步不同传感器在不同时刻采集的数据。 - 使用互相关性对齐信号
使用互相关性融合异步数据。 - 使用自相关求周期性
验证含噪信号中是否存在周期,并确定其持续时间。 - 回波抵消
使用自相关来过滤语音记录中的回声
(三)互相关和自相关概念
1. 互相关
互相关函数是描述随机信号x(t),y(t)在任意两个不同时刻t1,t2的取值之间的相关程度
2. 自相关
自相关函数是描述随机信号x(t)在任意两个不同时刻t1,t2的取值之间的相关程度
(四)信号的卷积
1. 作用
- 提供一种方便的频域处理方式
- 简单的应用就是频域滤波
2. 原理
- 输出函数是输入函数和系统函数的卷积
- 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加
- 对于线性时不变系统,如果知道该系统的单位响应,那么将单位响应和输入信号求卷积,就相当于把输入信号的各个时间点的单位响应 加权叠加,就直接得到了输出信号。
四、数字和模拟滤波器
(一)数字滤波器设计
1. IIR滤波器
Finite impulse response filters, 有限脉冲响应滤波
1.1 与 FIR 滤波器的比较
优点: 要满足同一组设定,它的滤波器阶数通常远远低于 FIR 滤波器
1.2 IIR分类
-
Butterworth 滤波器
-
Chebyshev I 类滤波器
-
Chebyshev II 类滤波器
-
椭圆滤波器
2. FIR滤波器
Infinite impulse response filters,无限脉冲响应滤波器
2.1 与IIR滤波器比较
优点:
- 它们可以具有精确的线性相位。
- 它们始终稳定。
- 设计方法通常是线性的。
- 它们可以在硬件中高效实现。
- 滤波器启动瞬态具有有限持续时间。
2.2 滤波器设计方法
- 加窗
对指定的矩形滤波器的截断傅里叶逆变换应用加窗 - 多频带(包含过渡带)
对频率范围的子带使用等波纹或最小二乘方法 - 约束最小二乘
根据最大误差约束,在整个频率范围内最小化平方积分误差 - 任意响应
任意响应,包括非线性相位和复滤波器 - 升余弦
具有平滑正弦转换的低通响应
(二)数字滤波器分析(未学习)
(三)数字滤波(未学习)
(四)多采样率信号处理(未学习)
(五)模拟滤波器(未学习)
五、变换(未学习)
六、频谱分析(未学习)
七、时频分析(未学习)
八、信号建模(未学习)
九、振动分析(未学习)
十、深度学习处理信号
(一)需要做的任务
- 信号标注
- 特征工程
- 数据集生成
(二)信号处理用到的函数
1. 标注函数
- labeledSignalSet
创建标记信号集 - signalLabelDefinition
创建信号标签定义
2. 数据存储函数
- signalDatastore 用于收集信号的数据存储
3. 特征提取函数
- findchangepts 发现信号的突变
- findpeaks 找到局部极大值
- findsignal 利用相似性搜索寻找信号定位
- fsst 傅里叶同步压缩变换
- instfreq 瞬时频率估计
- pentropy 信号的光谱熵
- periodogram 周期图功率谱密度估计
- pkurtosis 信号或谱图的光谱峰度
- powerbw 功率带宽
- pspectrum 在频域和时频域分析信号
- pwelch 韦尔奇功率谱密度估计
(三)信号处理的APP
- Signal Analyzer
可视化并比较多个信号和频谱 - Signal Labeler
标记信号属性,区域和兴趣点