【阿里天池赛题】医学影像报告异常检测--赛题思路分析

本文针对2021年阿里天池医学影像报告异常检测赛题进行深入分析,探讨了文本多标签分类问题的处理思路。包括数据预处理、特征工程、分类模型的选择与优化等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是本人的目前的思考拙见,如果有问题,请在评论区指出,还在持续思考实时更新

详细赛题

【阿里天池赛题】2021年赛道一:医学影像报告异常检测

1 初赛赛题分析

(1)最多17个输入,但不固定,17类label,每个label0-1分类,但需要计算每个label的概率
样本数量为10份
训练集10000
测试集3000
(2)初赛是一个文本多标签多分类问题
sklearn包中的两个函数来计算预测结果和预测概率

  • predict():返回预测标签结果
  • predict_proba():预测属于某个标签的概率

2 赛题处理思路

(1)详细分析赛题
待完善。。。
(2)数据预处理

  • 缺失值填充(pandas包)
  • 异常值处理
  • 是否有噪音,是否需要数据清洗
  • 数据分布(Label类别分布、句子长度分布、统计特征的分布异常值、统计字段的缺失比例)+不均衡分布处理
    (3)特征工程(特征值抽取)
  • 脱敏数据特征提取
  • 文本的向量处理(参考天池的新闻文本分类也是处理文本向量)
  • 抽取的角度(需要头脑风暴)
  • 特征处理(归一化、特征、标签编码)
    (4)分类模型
  • 分类算法:NB(Naive Bayes),决策树、SVM、KNN、LR(Logistic Regression)等
  • 集成学习:RF(Random Forest)、GBDT、Adaboost、XGBoost、LightGBM、GatBoot等
  • 神经网络:DL模型如CNN、LSTM、RNN等
    当数据量不大,暂不优先考虑神经网络
    (5)优化
  • 算法优化
  • 参数优化

3 准备工作

查找相关和类似赛题(关键词:文本分类、多分类、文本向量处理、文本向量神经网络、脱敏数据处理)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Better Bench

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值