1. 设 { B ( t ) , 0 ≤ t } \{B(t),0 \leq t\} {B(t),0≤t}为标准的布朗运动,求 Σ k = 1 30 B ( k ) 的 分 布 \Sigma_{k=1}^{30}B(k)的分布 Σk=130B(k)的分布
- 求所求分布的期望
- 求所求分布的方差
- 求所求分布的类型为什么分布
解:
2. 设 { W ( t ) , 0 ≤ t } \{W(t),0 \leq t\} {W(t),0≤t}为标准布朗运动,随机变量R~N(0,6)与随机过程 { W ( t ) , 0 ≤ t } \{W(t),0 \leq t\} {W(t),0≤t}独立,定义随机过程 X ( t ) = W ( t ) + R , t > 0 X(t) = W(t)+R,t>0 X(t)=W(t)+R,t>0
- 求随机过程{X(t),t>0}的协方差,及X(3)与X(5)的协方差
- 求随机过程{X(t),t>0}的特征函数,及X(6)在6处的特征函数值
- 求X(5)和R的相关系数
(1)因为W(t)服从正态分布N(0,t),R服从正态分布N(0,6)
所以X(t) = W(t)+R也服从正态分布N(0,t+6)
当s<t时
c o v ( s , t ) = E ( X ( s ) X ( t ) ) = E ( W ( s ) + R ) ( W ( t ) + R ) = E ( W ( s ) W ( t ) + R 2 ) cov(s,t) = E(X(s)X(t)) = E(W(s)+R)(W(t)+R) = E(W(s)W(t)+R^2) cov(s,t)=E(X(s)X(t))=E(W(s)+R)(W(t)+R)=E(W(s)W(t)+R2)
= E ( W ( s ) ( W ( t ) − W ( s ) + W ( s ) ) ) + 6 = E ( W ( s ) 2 ) + 6 = s + 6 = E(W(s)(W(t)-W(s)+W(s)))+6= E(W(s)^2)+6 = s+6 =E(W(s)(W(t)−W(s)+W(s)))+6=E(W(s)2)+6=s+6
所cov(3,5) = 3+6 =9
(2)因为X(t)也服从正态分布N(0,t+6),根据正态分布的特征函数公式知道
g ( t ) = e i u t − 1 σ 2 t 2 2 g(t) = e^{iut-\frac{1 \sigma ^2 t^2}{2}} g(t)=eiut−21σ2t2
g ( 6 ) = e − ( t 2 + 6 t ) 2 2 g(6) =e^{-\frac{(t^2+6t)^2 }{2}} g(6)=e−2(t2+6t)2
当t=6
g ( 6 ) = e − ( 72 ) 2 2 g(6) =e^{-\frac{(72)^2 }{2}} g(6)=e−2(72)2
(3)因为W(t)服从正态分布N(0,t),R服从正态分布N(0,6)
根据相关系数公式
ρ X R = C o v ( X s , R ) D X s D R \rho_{XR} =\frac{Cov(X_s,R)}{\sqrt{DX_s} \sqrt{DR}} ρXR=DXsDRCov(Xs,R)
其中 C o v ( X s , R ) = E X R − E X s E R = E X R = E ( ( W ( t ) + R ) R ) = E ( W R + R 2 ) = E R 2 Cov(X_s,R) = E_{XR} -EX_sER = EXR =E((W(t)+R)R)=E(WR+R^2) =ER^2 Cov(Xs,R)=EXR−EXsER=EXR=E((W(t)+R)R)=E(WR+R2)=ER2
所以当求 X 5 X_5 X5和R的相关系数, D X 5 = 5 + 6 = 11 , D R = 6 , C o v ( X 5 , R ) = 6 DX_5 = 5+6=11,DR = 6,Cov(X_5,R) =6 DX5=5+6=11,DR=6,Cov(X5,R)=6
ρ X R = C o v ( X s , R ) D X s D R = 6 11 6 \rho_{XR} =\frac{Cov(X_s,R)}{\sqrt{DX_s} \sqrt{DR}} = \frac{6}{\sqrt{11} \sqrt{6}} ρXR=DXsDRCov(Xs,R)=1166
3. 设 { W ( t ) , 0 ≤ t } \{W(t),0 \leq t\} {W(t),0≤t}为标准布朗运动,定义随机过程 X ( t ) = t + W 3 t , 0 ≤ t X(t) = t+W_{3t},0 \leq t X(t)=t+W3t,0≤t
- 计算 x 10 , X 40 x_{10},X_{40} x10,X40的相关系数
- 设标准正态分布的分布函数为 ϕ ( x ) \phi(x) ϕ(x),且 ϕ ( 1 ) = 0.841 , ϕ ( 2 ) = 0.977 \phi(1) = 0.841,\phi (2)=0.977 ϕ(1)=0.841,ϕ(2)=0.977,计算 X 12 X_{12} X12小鱼等于24的概率。
- 给出 X 20 X_{20} X20的特征函数,且在1/20处的值等于多少?
(1)因为W(t)服从标准正态分布N(0,1), W ( 3 t ) W(3t) W(3t)服从正态分布N(0,3t)
又 X = t + W 3 t X =t+W_3t X=t+W3t
则X服从正态分布N(t,3t)
根据相关系数公式 ρ X 10 X 40 = C o v ( X 10 , X 40 ) D X 10 D X 40 \rho_{X_{10}X_{40}} =\frac{Cov(X_{10},X_{40})}{\sqrt{DX_{10}} \sqrt{DX_{40}}} ρX10X40=DX10DX40Cov(X10,X40)
其中但 s < t 时 , C o v ( X s X t ) = E X s X t − E X s E t = E ( s t + W 3 s W 3 t ) − s t = W ( W 3 s W 3 t ) = E ( W 3 s ( W 3 t − W 3 s + W 3 s ) ) = E W 3 s 2 = 3 s s<t时,Cov(X_{s}X_{t}) = EX_sX_t - EX_sE_t =E(st +W_{3s}W_{3t})-st = W(W_{3s}W_{3t}) =E(W_{3s}(W_{3t}-W_{3s}+W_{3s})) =EW_{3s}^2 =3s s<t时,Cov(XsXt)=EXsXt−EXsEt=E(st+W3sW3t)−st=W(W3sW3t)=E(W3s(W3t−W3s+W3s))=EW3s2=3s
则 C o v ( X 10 X 40 ) = 3 ∗ 10 = 30 Cov(X_{10}X_{40}) =3*10=30 Cov(X10X40)=3∗10=30
D X 1 0 = 3 ∗ 10 = 30 , D X 4 0 = 3 ∗ 40 = 120 D_{X_10} =3*10=30,D_{X_40} =3*40 = 120 DX10=3∗10=30,DX40=3∗40=120
ρ X 10 X 40 = 30 30 120 \rho_{X_{10}X_{40}} =\frac{30}{\sqrt{30} \sqrt{120}} ρX10X40=3012030
(2)因为 X 12 = 12 + W 36 ∼ N ( 12 , 36 ) X_{12} =12+W_{36} \sim N(12,36) X12=12+W36∼N(12,36)化为标准正态分布 Y = X 12 − 12 6 ∼ N ( 0 , 1 ) Y = \frac{X_{12} -12}{6} \sim N(0,1) Y=6X12−12∼N(0,1)
p ( X 12 ⩽ 24 ) = p ( X 12 − 12 6 ⩽ 24 − 12 6 ) = p ( Y ⩽ 2 ) = Φ ( 2 ) = 0.977 p(X_{12} \leqslant 24) = p(\frac{X_{12} -12}{6} \leqslant \frac{24-12}{6}) = p(Y \leqslant 2 ) = \Phi(2) = 0.977 p(X12⩽24)=p(6X12−12⩽624−12)=p(Y⩽2)=Φ(2)=0.977
(3)因为 X t ∼ ( t , 3 t ) , X 10 ∼ ( 10 , 30 ) , X 40 ∼ ( 40 , 120 ) X_t \sim (t,3t),X_{10} \sim (10,30),X_{40} \sim (40,120) Xt∼(t,3t),X10∼(10,30),X40∼(40,120)
所以根据正态分布的概率密度公式 f x = 1 2 π σ e − ( x − u ) 2 2 σ 2 fx = \frac{1}{\sqrt{2\pi} \sigma }e^{-\frac{(x-u)^2}{2\sigma^2}} fx=2πσ1e−2σ2(x−u)2
f X 10 X 40 = 1 2 π 30 ∗ 120 e − ( x − 10 ) 2 60 − ( x − 40 ) 2 240 f_{X_{10}X_{40}} = \frac{1}{2 \pi \sqrt{30*120}}e^{-\frac{(x-10)^2}{60}-\frac{(x-40)^2}{240}} fX10X40=2π30∗1201e−60(x−10)2−240(x−40)2
(4)因为 X 20 ∼ N ( 20 , 60 ) X_{20}\sim N(20,60) X20∼N(20,60)
根据正态分布的特征函数公式
g ( t ) = e i u t − σ 2 t 2 2 g(t) = e^{iut - \frac{\sigma^2 t^2}{2}} g(t)=eiut−2σ2t2
得到 X 20 的 特 征 函 数 为 g ( t ) = e 20 i t − 30 t 2 X_{20}的特征函数为g(t) = e^{20it - 30 t^2} X20的特征函数为g(t)=e20it−30t2
- 设 { B ( t ) , 0 ≤ t } \{ B(t),0 \leq t\} {B(t),0≤t}为标准布朗运动
- 求B(4),B(5)的联合概率密度函数
- 求B(4)+B(5)的分布
- 设x为任意实数,求B(4)=x的条件下B(5)的条件密度函数 g x ( y ) = f B ( 5 ) ∣ [ B ( 4 ) = x ] ( y ) g_x(y) = f_{B(5)|[B(4)=x]}(y) gx(y)=fB(5)∣[B(4)=x](y),且当x=y=1时,条件概率密度等于多少?
第三问不会