【2024 年国际高等学校数学建模竞赛(IMMCHE)】问题 A:金字塔石块的运输 问题分析及数学模型及求解代码
Problem A: Transportation of Pyramid Stones
1 题目
建造金字塔是古埃及文明的杰出成就之一。它们不仅是建筑奇迹,也是人类历史和文化的重要遗产。通过研究金字塔,我们可以更好地了解古埃及人的宗教、社会和科技水平。
金字塔是古埃及法老的陵墓,一些学者认为金字塔具有天文观测、祭祀仪式和储存食物等功能。来世信仰和宗教象征是建造金字塔的主要目的。也有学者认为, 金字塔是能量接收器和放大器,可以实现能量积累和转换,还可以作为外星飞船的加油站。
图 1.古埃及金字塔。
关于建造金字塔的石头是如何运输的,有几种常见的说法:
- 水运理论:古埃及人利用尼罗河的水运系统,用船将石头运到金字塔附近的内陆港口。然后,通过修建运河和水路系统,将石块进一步运到金字塔的建筑工
地。这种方法可以减少陆路运输石头的距离和难度。
-
斜坡处理:在金字塔外建一个大斜坡,然后把石头拉上去。砌一个斜坡,再砌一层石头,逐渐抬高金字塔。但这种方法需要大量的人力和时间,而且修建斜坡也存在一定的困难。
-
螺旋施工法:沿着四面墙壁建造螺旋形楼梯,一侧爬楼梯,另一侧覆盖顶部。这种方法不需要使用杠杆、撬棍和起重机等工具,更符合古埃及人的实际情况。
应该指出的是,这些说法存在一定争议,金字塔石块的运输方式仍是一个未解之谜。在金字塔的建造过程中,需要将大量的石头从采石场运到建筑工地。假设石块的重量和大小相同,那么运输工具就是飞船、马车或外星飞船,而运输工具的承载能力是有限的。
请在你的团队中建立一个运输金字塔石块的数学模型,并解决下列问题。
问题 1:建立数学模型,收集相关数据,以最大的胡夫金字塔为例,计算在给定运输车辆数和载重量的情况下,完成石材运输任务所需的最少运输次数。
问题 2: 考虑不同的运输策略,例如每次运输尽可能多的石块,优先运输距离较远的石块。优化并求解问题1中的数学模型。
问题 3:分析问题 2 中数学模型的敏感性,研究运输车辆数量、载重量和石块数量等因素 对运输次数的影响。
问题 4:建立金字塔石的最优运输模型,并根据前一个模型的结果,提出合理的运输方案,以提高运输效率,降低运输成本。
2 问题分析
更新时间:2024-7-27 11:30
A题是物流优化与资源调度的问题,主要涉及资源的分配与最优路径的确定。这个题题目简单,好做,但是想要获奖,就要做深,考虑历史情况,加入更多的考虑因素,比如人力、物力、天地条件,以及分析不同的运输方案。前期做好历史的调研,古代文明有哪些物流与运输系统,古代有哪些建筑技术,不要从现代人的技术和角度去实现,要从古文明的角度去做。最后能做一些仿真可视化最好。
2.1 问题一:计算运输次数
这是一个典型的物流与运输问题,是计算石块从一个采石场到金字塔建筑工地的运输次数。需要搜集胡夫金字塔的石块总数量、吨数、不同的交通工具的种类、载重、以及单次运输的距离。用简单的数学公式计算。胡夫金字塔总高度:约 146.6 米,基座边长:约 230.4 米。体积:约 2,600,000 立方米。石块数量:约 2,300,000 块。石块平均重量:2.5 吨(重石块可以达到 15 吨以上)。
2.2 问题二:不同运输策略的优化
这是优化调度问题,涉及确定最优的运输策略以减少运输次数或成本。比如优先考虑每次运输尽可能多的石块优先考虑使用最大载重量的运输工具。然后再利用问题一中的模型,计算每种情况下的总运输次数。
2.3 问题三:敏感性分析
这是敏感性分析问题,这个题主要做一些可视化来进行分析模型。
2.4 问题四:多目标优化模型
这问是多目标优化,要求平衡运输效率与成本的最佳方案。从多种方案排列组合的方式找到最佳的运输方案,不仅仅只考虑一种运输方案。在优化问题中的约束条件比如有运输工具的载重量限制,每个运输工具的最大出行次数限制,人力和物力的限制。最后使用线性规划、整数规划或启发式算法(如遗传算法、模拟退火算法)这些求解。