1 介绍
年份:2024
期刊: Advances in Neural Information Processing Systems
Heng A, Soh H. Selective amnesia: A continual learning approach to forgetting in deep generative models[J]. Advances in Neural Information Processing Systems, 2024, 36.
本文提出了一种名为“选择性遗忘”(Selective Amnesia)的技术,它基于持续学习理念,通过结合弹性权重固化(Elastic Weight Consolidation, EWC)和生成性重放(Generative Replay, GR)方法,并引入替代目标分布,实现对预训练深度生成模型中特定概念的选择性遗忘,允许用户指定如何遗忘特定概念。
2 创新点
- 选择性遗忘概念:提出了一种新技术,允许用户指定预训练深度生成模型中需要遗忘的概念,实现对特定概念的控制性遗忘。
- 持续学习视角:将选择性遗忘问题从持续学习的角度进行框架化,与传统持续学习防止遗忘的目标相反,本文的方法旨在实现有目的的遗忘。
- 统一的目标函数:提出了一个统一的目标函数,结合了EWC和GR方法,使得模型能够在不忘记得数据的同时忘记特定数据。
- 替代目标分布:引入了替代目标分布的概念,通过优化这个替代分布来降低对遗忘数据的对数似然,从而实现遗忘。
- 条件变分似然模型的应用:将方法应用于条件变分似然模型,包括变分自编码器(VAEs)和去噪扩散概率模型(DDPMs),展示了方法的通用性。
- 用户定义的遗忘重映射:允许用户定义如何将被遗忘的概念映射到更合适的概念上,增加了遗忘过程的灵活性和控制性。
- 实验验证:在多个数据集和模型上进行了广泛的实验,验证了方法的有效性,包括在MNIST、CIFAR10、STL10数据集上的离散类别遗忘,以及在文本到图像模型中的名人和不雅内容的遗忘。
- 代码公开:提供了公开的代码,使得研究社区可以复现和进一步研究提出的方法。
3 相关研究
在“1 Introduction”部分,文章概述了与选择性遗忘(Selective Amnesia)相关的几个研究领域,并提到了一些具体的文献。以下是各个研究点的总结以及对应的文献:
- Deep Generative Models and Misuse Concerns:
- 近年来,大规模文本到图像模型取得了显著进展,但同时也引发了对这些模型可能被滥用来生成有害、歧视性和不适当内容的担忧。
- [1] Patrick Schramowski, Manuel Brack, Björn Deiseroth, and Kristian Kersting. Safe latent diffusion: Mitigating inappropriate degeneration in diffusion models. arXiv preprint arXiv:2211.05105, 2022.
- [2] Yisroel Mirsky and Wenke Lee. The creation and detection of deepfakes: A survey. ACM Computing Surveys (CSUR), 54(1):1–41, 2021.
- [3] Luisa Verdoliva. Media forensics and deepfakes: an overview. IEEE Journal of Selected Topics in Signal Processing, 14(5):910–932, 2020.
- Data Forgetting:
- 数据遗忘领域已经提出了多种方法,包括统计查询学习问题、数据集分片方法、基于模型权重的信息不可访问性定义的遗忘方法等。
- [4] Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In 2015 IEEE symposium on security and privacy, pages 463–480. IEEE, 2015.
- [5] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium on Security and Privacy (SP), pages 141–159. IEEE, 2021.
- [6] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Selective forgetting in deep networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9304–9312, 2020.
- [7] Quoc Phong Nguyen, Bryan Kian Hsiang Low, and Patrick Jaillet. Variational bayesian unlearning. Advances in Neural Information Processing Systems, 33:16025–16036, 2020.
- [22] Yinjun Wu, Edgar Dobriban, and Susan Davidson. Deltagrad: Rapid retraining of machine learning models. In International Conference on Machine Learning, pages 10355–10366. PMLR, 2020.
- Concept Erasure in Text-to-Image Diffusion Models:
- 在文本到图像扩散模型的背景下,已有研究致力于概念擦除,这些方法通常利用这些模型的特定设计特征。
- [1] Patrick Schramowski, Manuel Brack, Björn Deiseroth, and Kristian Kersting. Safe latent diffusion: Mitigating inappropriate degeneration in diffusion models. arXiv preprint arXiv:2211.05105, 2022.
- [8] Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts from diffusion models. arXiv preprint arXiv:2303.07345, 2023.
- [9] Eric Zhang, Kai Wang, Xingqian Xu, Zhangyang Wang, and Humphrey Shi. Forget-me-not: Learning to forget in text-to-image diffusion models. arXiv preprint arXiv:2303.17591, 2023.
- Continual Learning:
- 持续学习领域主要关注在深度神经网络中顺序学习任务,同时避免灾难性遗忘。提出了多种方法,包括正则化方法、架构修改和数据重放。
- [14] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.
- [15] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In International conference on machine learning, pages 3987–3995. PMLR, 2017.
- [16] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint arXiv:1606.04671, 2016.
- [17] Timothy J Draelos, Nadine E Miner, Christopher C Lamb, Jonathan A Cox, Craig M Vineyard, Kristofor D Carlson, William M Severa, Conrad D James, and James B Aimone. Neurogenesis deep learning: Extending deep networks to accommodate new classes. In 2017 international joint conference on neural networks (IJCNN), pages 526–533. IEEE, 2017.
- [18] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative replay. Advances in neural information processing systems, 30, 2017.
- Editing and Unlearning in Generative Models:
- 一些研究调查了生成模型的事后编辑和重训练,包括对GANs和归一化流的数据编辑和遗忘。
- [23] Zhifeng Kong and Kamalika Chaudhuri. Data redaction from pre-trained gans. In 2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), pages 638–677. IEEE, 2023.
- [24] Shimon Malnick, Shai Avidan, and Ohad Fried. Taming a generative model. arXiv preprint arXiv:2211.16488, 2022.
- [25] Saemi Moon, Seunghyuk Cho, and Dongwoo Kim. Feature unlearning for generative models via implicit feedback. arXiv preprint arXiv:2303.05699, 2023.
- [26] David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, and Antonio Torralba. Rewriting a deep generative model. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pages 351–369. Springer, 2020.
4 算法
4.1 算法原理
- 问题定义:
- 算法的目标是对于一个预训练的条件生成模型,使其能够忘记如何生成特定的数据(Df),同时记住如何生成其他数据(Dr)。
- 贝叶斯持续学习视角:
- 从贝叶斯的角度出发,通过调整模型参数的后验分布,使得模型在记住(Dr)的同时忘记(Df)。
- 弹性权重固化(Elastic Weight Consolidation, EWC):
- EWC通过引入一个二次惩罚项来保护与旧任务(Df)相关的权重,从而减缓对这些权重的更新,以保留旧任务的知识。
- 生成性重放(Generative Replay, GR):
- GR利用生成模型来重现旧任务的数据,这些数据被用来在训练新任务时增强当前任务的数据,以减少对旧任务的遗忘。
- 统一目标函数:
- 将EWC和GR的方法统一到一个目标函数中,通过引入一个额外的似然项(对应于Dr的数据)来优化,同时保持对Dr的后验优化不变。
- 替代目标分布:
- 由于直接最小化对数似然或证据下界(ELBO)可能会导致问题,算法提出了一个替代目标,即最大化一个替代分布的对数似然,这个替代分布与要忘记的类的分布不同。
- 优化策略:
- 通过最大化替代分布的对数似然,同时保留EWC中的惩罚项,算法能够降低对Df的对数似然,从而实现遗忘。
- 实验验证:
- 算法在多个数据集和模型上进行了实验验证,包括MNIST、CIFAR10、STL10以及文本到图像的扩散模型(如Stable Diffusion)。
- 代码公开:
- 算法的代码是公开的,可以通过GitHub访问,以便研究社区可以复现和进一步研究提出的方法。
4.2 算法步骤
- 定义问题:
- 考虑一个数据集 D D D,它可以被划分为 D f D_f Df(需要忘记的数据)和 D r D_r Dr(需要记住的数据)。
- 贝叶斯持续学习视角:
- 从贝叶斯的角度出发,通过调整模型参数 θ \theta θ的后验分布,使得模型在记住 D r D_r Dr的同时忘记 D f D_f D