定义
设 A 为一个有 n 个数字的有序集 (n>1),其中所有数字各不相同。
如果存在正整数 i, j 使得 1 ≤ i < j ≤ n 而且 A[i] > A[j],则 <A[i], A[j]> 这个有序对称为 A 的一个逆序对,也称作逆序数。
求解方法
1.暴力枚举
利用两重循环进行枚举。该算法的时间复杂度为O(n^2)
for(int i=0;i<n-1;i++)
{
for(int k=i+1;k<n;k++)
{
if(a[i]>a[k]) sum++;
}
}
2.归并排序
归并排序原理是将整个序列分为两段进行排序,我们可以利用这个性质,后段插入的其序号必定比前段剩余的高,所以其可以组成逆序对
int cnt=0;
int a[N],tempa[N];
void merge_sort(int l, int r, int *A)
{
if(l>=r) return;
int mid=(l+r)>>1;
merge_sort(l,mid,A);
merge_sort(mid+1,r,A);
int ll=l,rr=mid+1,t=0;
while(ll<=mid && rr<=r)
{
if(A[ll]<A[rr]) tempa[t++]=A[ll++];
else tempa[t++]=A[rr++],cnt+=mid-ll+1;
}
while(ll<=mid) tempa[t++]=A[ll++];
while(rr<=r) tempa[t++]=A[rr++];
for(int i=0;i<t;i++) A[i+l]=tempa[i];
}
3. 树状数组
树状数组可以通过查询操作来查找比某数小的数,我们可以利用这一性质来实现逆序对。
int lowbit(int x)
{
return x&(-x);
}
void update(int x)
{
for(int i=x;i<=n;i+=lowbit(i)) c[i]++;
}
void Search(int x)
{
for(int i=x;i>0;i-=lowbit(i)) ans+=c[i];
}
推荐阅读
【树状数组 求逆序对】排序
如果不清楚树状数组的概念可以看下面几篇文章
掌握树状数组~彻底入门
树状数组简单易懂的详解