线性掩码的理解

定义: 设 X ∈ { 0 , 1 } n X\in\{0,1\}^n X{0,1}n X X X的线性掩码定义为某个向量 Γ X ∈ { 0 , 1 } n \Gamma X\in\{0,1\}^n ΓX{0,1}n Γ \Gamma Γ X X X的内积 Γ X ⋅ X \Gamma X \cdot X ΓXX代表 X X X的某些分量的线性组合,即 Γ X ⋅ X = ⊕ i , Γ X i = 1 X i \Gamma X \cdot X= \underset{i,\Gamma X_i =1} {\oplus}X_i ΓXX=i,ΓXi=1Xi

举例:
X = { x 0 , x 1 , x 2 , x 3 } X={\{x_0,x_1,x_2,x_3\}} X={x0,x1,x2,x3},线性掩码 Γ X = { y 0 , y 1 , y 2 , y 3 } \Gamma X={\{y_0,y_1,y_2,y_3\}} ΓX={y0,y1,y2,y3}
X = { 1 , 1 , 1 , 1 } X={\{1,1,1,1\}} X={1,1,1,1} Γ X = { 0 , 1 , 0 , 1 } \Gamma X={\{0,1,0,1\}} ΓX={0,1,0,1}。则 Γ X ⋅ X = x 0 ⋅ y 0 ⊕ x 1 ⋅ y 1 ⊕ x 2 ⋅ y 2 ⊕ x 3 ⋅ y 3 = x 1 ⋅ y 1 ⊕ x 3 ⋅ y 3 = x 1 ⊕ x 3 = 0 \Gamma X \cdot X=x_0\cdot y_0\oplus x_1\cdot y_1\oplus x_2\cdot y_2\oplus x_3\cdot y_3=x_1\cdot y_1\oplus x_3\cdot y_3=x_1\oplus x_3=0 ΓXX=x0y0x1y1x2y2x3y3=x1y1x3y3=x1x3=0,相当于取 x 1 x_1 x1 x 3 x_3 x3的线性组合(异或)。
同理,若 X = { 1 , 1 , 1 , 1 } X={\{1,1,1,1\}} X={1,1,1,1} Γ X = { 1 , 1 , 0 , 1 } \Gamma X={\{1,1,0,1\}} ΓX={1,1,0,1}。则 Γ X ⋅ X = x 0 ⊕ x 1 ⊕ x 3 = 1 \Gamma X \cdot X=x_0\oplus x_1\oplus x_3=1 ΓXX=x0x1x3=1,相当于取 x 0 x_0 x0 x 1 x_1 x1 x 3 x_3 x3的线性组合(异或)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值