- 博客(8)
- 收藏
- 关注
原创 Pandas略过表头读取数据(csv)
数据:las/log格式直接转的csv,用excel打开后所有数据都在表格第一列目标:想略过文件表头,把数据表头读出来(条件索引)并按空格分割成字符串import reimport pandas as pddata = pd.read_csv('xxx\\0-5.csv',engine='python',sep='\t')data.columns = ['1'] # 给读取的csv加上列索引名字a = data[data['1'].str.contains('~A ')] # 读取数据表头
2020-10-29 09:15:57 1425
原创 批量修改文件夹中文件后缀名
待修改数据 1.doc 2.doc目标格式: 1.txt 2.txt在此文件夹新建一个记事本,输入代码 ren *.doc *.txt,保存,然后把这个记事本的后缀改为bat,双击运行就行(无论多少的文件,运行这个bat文件都能同时修改后缀~)...
2020-10-28 21:54:24 298
原创 多个文件多数据批量读取
数据情况如下:1.两个文件夹:2.每个文件夹内若干个数据import numpy as npimport os# 加载数据路径x_path = r'xxxx\BP_input_ai_data\\'y_path = r'xxxx\BP_input_Y_data\\'def read(x_path,y_path): x_files = os.listdir(x_path) y_files = os.listdir(y_path) file_num = len(x_f
2020-10-09 20:48:50 769
原创 【bug记录】ValueError: could not convert string to float: b‘LAYER‘
小问题啦,遇到之后以为是路径和文件名出了问题,百度无果,其实是加载的txt有问题,代码如下import numpy as npdata_load_path = r'E:\stu\summer vacation\TensorFlow\code\SummerVacation_laptop2\project_hori_code\iloop_seis_data\20201007\\'data = np.loadtxt(data_load_path+'iloop_poro_ai_xy_100_layers.
2020-10-09 14:30:51 550
原创 TFRecord数据集——查看数据大小
import tensorflow as tfdata = parameters.path + 'nn_input_test.tfrecords'count = 0for record in tf.python_io.tf_record_iterator(data): count += 1print(count)
2020-09-28 15:36:13 975
原创 InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor ‘x_test
InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'x_test折磨了我好几天的bug…查了很多网上的对策,都和我的问题不一样。今天仿佛一道灵光闪现,似乎解决了我的code:自制TFRecord格式的数据集(训练集和测试集)做回归拟合 (有时间会放出来,搜了半天也没找到回归拟合的tfrecord怎么做,网上都是图像识别、分类,我也是第一次学,憋着一口老血乱捣鼓一通,似乎
2020-09-28 14:13:19 307
转载 Python小工具(3)----- 学术论文快速作图(不同期刊格式图表)
Python数据分析:图表美观清晰,自带对比功能安装使用示例本文转自Github 点此进入传送门来自于哈佛天文研究所博士后自己制作的小工具,主要是在matplotlib上增加的一些小功能,支持调用不同期刊要求的格式进行作图图示及翻译部分引用 量子位公众号推送文章安装pip就行(在Matplotlib基础上)# for latest commitpip install git+https://github.com/garrettj403/SciencePlots.git# for last
2020-08-16 16:47:35 4691
转载 Python小工具(2)-----数据分析(sweetviz库的使用)
Python数据分析:图表美观清晰,自带对比功能sweetviz库的使用1.库的安装2.基本使用语法3.分析单个数据(及其可选的目标功能)sweetviz库的使用特点:1.目标分析How target values (boolean or numerical) relate to other features2.可视化及比较分析:(1)两个数据集之间 Distinct datasets (e.g. training vs test data)(2)同个数据集的不同类别 Intra-set c
2020-08-16 16:19:10 3093
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人