N皇后问题
题目
n皇后问题研究的是将n个皇后放在n * n 的棋盘上,要求任何两个皇后不同行、不同列,也不在同一条直线上。
问题1:
给定数n,返回n皇后的摆法有多少种。
问题2:
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
题解
如果在第i行第j列,放置了一个皇后,判断不能放皇后的位置:
1、整个第i行其他位置
2、整个第j列其他位置
3、斜线上的位置,对于位置(a, b)和(c, d),如果|a - c| = |b - d|,说明这两个位置在同一条斜线上。
通过递归方式解决此问题,把递归过程设计成逐行放置皇后的方式,也就是一行一行的放,后放的和先放的自然就不同行,可以避开条件1不能放皇后的位置,当在第k行放皇后时,需要和考虑前k减1行皇后不同列并且不在同一条斜线上。用一个数组保存已放入皇后的位置,假设数组为record,record[i](i < n)的值表示第i行皇后所在的列。例如,当n = 4时,4个皇后放在4 * 4的棋盘上,有两种方法。左图record = [1, 3, 0,2],右图record = [2,0, 3,1]。
问题1代码:
public int totalNQueens(int n) {
int[] record = new int[n];
int res = num(record, 0, n);
return res;
}
public int num(int[] record, int i, int n){
if(i == n){
return 1;
}
int res = 0;
for(int j = 0; j < n; j++){
if(isValid(record, i, j)){
record[i] = j;
res += num(record, i + 1, n);
}
}
return res;
}
//判断在第i行第j列位置放皇后是否有效
public boolean isValid(int[] record, int i, int j){
for(int k = 0; k < i; k++){
if(record[k] == j || Math.abs(j - record[k]) == Math.abs(i - k)){
return false;
}
}
return true;
}
问题2代码,根据问题1改写:
private static List<List<String>> num(int n) {
int[] record = new int[n];
List<List<String>> res = new ArrayList<List<String>>();
process(res ,0, record, n);
return res;
}
//i表示第i行, record[i]表示第i行皇后所在的列数{1, 3, 0, 2}
public static void process(List<List<String>> res, int i, int[] record, int n) {
if(i == n) {
List<String> path = new ArrayList<>();
char[] str = new char[n];
for(int k = 0; k < n; k++) {
Arrays.fill(str, '.');
str[record[k]] = 'Q';
path.add(new String(str));
}
res.add(path);
return;
}
for(int j = 0; j < n; j++) {
if(isValid(i, record, j)) {
record[i] = j;
process(res, i + 1, record, n);
}
}
}
public static boolean isValid(int i, int[] record, int j) {
for(int k = 0; k < i; k++) {
if(record[k] == j || Math.abs(k - i) == Math.abs(record[k] - j)) {
return false;
}
}
return true;
}
参考文献:左程云算法,力扣