2021-01-24

N皇后问题

题目

n皇后问题研究的是将n个皇后放在n * n 的棋盘上,要求任何两个皇后不同行、不同列,也不在同一条直线上。

问题1:

给定数n,返回n皇后的摆法有多少种。

问题2:

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。

题解

如果在第i行第j列,放置了一个皇后,判断不能放皇后的位置:
1、整个第i行其他位置
2、整个第j列其他位置
3、斜线上的位置,对于位置(a, b)和(c, d),如果|a - c| = |b - d|,说明这两个位置在同一条斜线上。
通过递归方式解决此问题,把递归过程设计成逐行放置皇后的方式,也就是一行一行的放,后放的和先放的自然就不同行,可以避开条件1不能放皇后的位置,当在第k行放皇后时,需要和考虑前k减1行皇后不同列并且不在同一条斜线上。用一个数组保存已放入皇后的位置,假设数组为record,record[i](i < n)的值表示第i行皇后所在的列。例如,当n = 4时,4个皇后放在4 * 4的棋盘上,有两种方法。左图record = [1, 3, 0,2],右图record = [2,0, 3,1]。

问题1代码:

public int totalNQueens(int n) {
    int[] record = new int[n];
    int res = num(record, 0, n);
    return res;
}

public int num(int[] record, int i, int n){
    if(i == n){
        return 1;
    }
    int res = 0;
    for(int j = 0; j < n; j++){
        if(isValid(record, i, j)){
            record[i] = j;
            res += num(record, i + 1, n);
        }
    }
    return res;
}
//判断在第i行第j列位置放皇后是否有效
public boolean isValid(int[] record, int i, int j){
    for(int k = 0; k < i; k++){
        if(record[k] == j || Math.abs(j - record[k]) == Math.abs(i - k)){
            return false;
        }
    }
    return true;
}

问题2代码,根据问题1改写:

private static List<List<String>> num(int n) {
	int[] record = new int[n];
	List<List<String>> res = new ArrayList<List<String>>();
	process(res ,0, record, n);
	return res;
}

//i表示第i行, record[i]表示第i行皇后所在的列数{1, 3, 0, 2}
public static void process(List<List<String>> res, int i, int[] record, int n) {
	if(i == n) {
		List<String> path = new ArrayList<>();
		char[] str = new char[n];
		for(int k = 0; k < n; k++) {
			Arrays.fill(str, '.');
			str[record[k]] = 'Q';
			path.add(new String(str));
		}
		res.add(path);
		return;
	}
	
	for(int j = 0; j < n; j++) {
		if(isValid(i, record, j)) {
			record[i] = j;
			process(res, i + 1, record, n);
		}
	}
}

public static boolean isValid(int i, int[] record, int j) {
	for(int k = 0; k < i; k++) {
		if(record[k] == j || Math.abs(k - i) == Math.abs(record[k] - j)) {
			return false;
		}
	}
	return true;
}

参考文献:左程云算法,力扣

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值