剑指 Offer II 059. 数据流的第 K 大数值
设计一个找到数据流中第 k 大元素的类(class)。注意是排序后的第 k 大元素,不是第 k 个不同的元素。
请实现 KthLargest 类:
KthLargest(int k, int[] nums) 使用整数 k 和整数流 nums 初始化对象。
int add(int val) 将 val 插入数据流 nums 后,返回当前数据流中第 k 大的元素。
示例:
输入:
[“KthLargest”, “add”, “add”, “add”, “add”, “add”]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
输出:
[null, 4, 5, 5, 8, 8]
解释:
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3); // return 4
kthLargest.add(5); // return 5
kthLargest.add(10); // return 5
kthLargest.add(9); // return 8
kthLargest.add(4); // return 8
提示:
1 <= k <= 104
0 <= nums.length <= 104
-104 <= nums[i] <= 104
-104 <= val <= 104
最多调用 add 方法 104 次
题目数据保证,在查找第 k 大元素时,数组中至少有 k 个元素
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/jBjn9C
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
分析
优先队列(堆)的基本使用。
利用最小堆,只存前k个大的数据,添加数据的时候更新,堆顶即要输出的数。
题解(Java)
class KthLargest {
private PriorityQueue<Integer> minHeap;
private int size;
public KthLargest(int k, int[] nums) {
size = k;
minHeap = new PriorityQueue<>();
for (int num : nums) {
//调用类中的方法
add(num);
}
}
public int add(int val) {
if (minHeap.size() < size) {
minHeap.offer(val);
} else if (val > minHeap.peek()) {
minHeap.poll();
minHeap.offer(val);
}
return minHeap.peek();
}
}
/**
* Your KthLargest object will be instantiated and called as such:
* KthLargest obj = new KthLargest(k, nums);
* int param_1 = obj.add(val);
*/