opencv学习系列——绘制给定图片的直方图分布

绘制给定图片的直方图分布

(代码在文末~~)

直方图显示

(1)先不考虑第四通道,给定一张3通道的图片,首先把多通道图片分成单通道,对每个通道计算直方图。计算直方图直接调用cv中的calcHist函数:
calcHist(const Mat* images, int nimages, const int* channels, InputArray mask, OutputArray hist, int dims, const int* histSize, const float** ranges, bool uniform=true, bool accumulate=false )
(2)这里使用一张颜色比较丰富的图片为例:在这里插入图片描述

(3)得到各个通道的直方图如下所示:
在这里插入图片描述在这里插入图片描述在这里插入图片描述

(4)三个通道的直方折线图放在一起如下所示:
在这里插入图片描述

直方图均值化

(5)直方图应用——直方图均值化
直方图均衡化是通过拉伸像素强度的分布范围,使得在0~255灰阶上的分布更加均衡,提高了图像的对比度,达到改善图像主观视觉效果的目的。对比度较低的图像适合使用直方图均衡化方法来增强图像细节。

灰色图像对比:
原始:
在这里插入图片描述
均值化后:
在这里插入图片描述
彩色
均值化前:
在这里插入图片描述
均值化后:
在这里插入图片描述
但是这种处理会产生过度曝光的效果:

在这里插入图片描述在这里插入图片描述

//彩色图像直方图均衡化

#include<opencv2/opencv.hpp>
#include<iostream>
#include<cmath>

using namespace cv;
using namespace std;

const char* output = "histogram iamge";

int main(int argc, char* argv)
{
	Mat src, dst, dst1;
	src = imread("D:\\picture\\scene.jpg");
	if (!src.data)
	{
		printf("could not load image...\n");
		return -1;
	}
	char input[] = "input image";
	namedWindow(input, 0);
	namedWindow(output, 0);
	resizeWindow(input, 600, 400);
	imshow(input, src);

	//分割通道
	vector<Mat>channels;
	split(src, channels);

	Mat blue, green, red;
	blue = channels.at(0);
	green = channels.at(1);
	red = channels.at(2);
	//分别对BGR通道做直方图均衡化
	equalizeHist(blue, blue);
	equalizeHist(green, green);
	equalizeHist(red, red);
	//合并通道
	merge(channels, dst);
	resizeWindow(output, 600, 400);
	imshow(output, dst);

	waitKey(0);
	return 0;
}
//获得直方图
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>

using namespace cv;
using namespace std;



int main(int argc, char** argv)
{

	//----------------------example 1-------------------------------//
	Mat src, dst;
	/// Load image
	src = imread("D:\\picture\\color.jpg");

	if (!src.data)
	{
		cout << "load image failed" << endl;
		return -1;
	}

	/// Separate the image in 3 places ( R, G and B )
	vector<Mat> rgb_planes;

	Mat hsv;
	cvtColor(src, hsv, COLOR_BGR2HSV);
	split(hsv, rgb_planes);

	split(src, rgb_planes);

	/// Establish the number of bins 
	int histSize = 256;

	/// Set the ranges ( for R,G,B) )
	float range[] = { 0, 255 };
	const float* histRange = { range };

	bool uniform = true; bool accumulate = false;

	Mat r_hist, g_hist, b_hist;

	/// Compute the histograms:
	calcHist(&rgb_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate);
	calcHist(&rgb_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate);
	calcHist(&rgb_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate);

	// Draw the histograms for R, G and B
	int hist_w = 600; int hist_h = 400;
	int bin_w = cvRound((double)hist_w / histSize);

	Mat rgb_hist[3];
	for (int i = 0; i < 3; ++i)
	{
		rgb_hist[i] = Mat(hist_h, hist_w, CV_8UC3, Scalar::all(0));
	}

	Mat histImage(hist_h, hist_w, CV_8UC3, Scalar(0, 0, 0));

	/// Normalize the result to [ 0, histImage.rows-10]
	normalize(r_hist, r_hist, 0, histImage.rows - 10, NORM_MINMAX);
	normalize(g_hist, g_hist, 0, histImage.rows - 10, NORM_MINMAX);
	normalize(b_hist, b_hist, 0, histImage.rows - 10, NORM_MINMAX);

	/// Draw for each channel 
	for (int i = 1; i < histSize; i++)
	{
		line(histImage, Point(bin_w * (i - 1), hist_h - cvRound(r_hist.at<float>(i - 1))),
			Point(bin_w * (i), hist_h - cvRound(r_hist.at<float>(i))),
			Scalar(0, 0, 255), 1);
		line(histImage, Point(bin_w * (i - 1), hist_h - cvRound(g_hist.at<float>(i - 1))),
			Point(bin_w * (i), hist_h - cvRound(g_hist.at<float>(i))),
			Scalar(0, 255, 0), 1);
		line(histImage, Point(bin_w * (i - 1), hist_h - cvRound(b_hist.at<float>(i - 1))),
			Point(bin_w * (i), hist_h - cvRound(b_hist.at<float>(i))),
			Scalar(255, 0, 0), 1);
	}

	for (int j = 0; j < histSize; ++j)
	{
		int val = saturate_cast<int>(r_hist.at<float>(j));
		rectangle(rgb_hist[0], Point(j * 2 + 10, rgb_hist[0].rows), Point((j + 1) * 2 + 10, rgb_hist[0].rows - val), Scalar(0, 0, 255), 1, 8);

		val = saturate_cast<int>(g_hist.at<float>(j));
		rectangle(rgb_hist[1], Point(j * 2 + 10, rgb_hist[1].rows), Point((j + 1) * 2 + 10, rgb_hist[1].rows - val), Scalar(0, 255, 0), 1, 8);

		val = saturate_cast<int>(b_hist.at<float>(j));
		rectangle(rgb_hist[2], Point(j * 2 + 10, rgb_hist[2].rows), Point((j + 1) * 2 + 10, rgb_hist[2].rows - val), Scalar(255, 0, 0), 1, 8);
	}

	/// Display 
	namedWindow("calcHist Demo", CV_WINDOW_AUTOSIZE);
	namedWindow("wnd");
	imshow("calcHist Demo", histImage);
	imshow("wnd", src);

	imshow("R", rgb_hist[0]);
	imshow("G", rgb_hist[1]);
	imshow("B", rgb_hist[2]);
	waitKey();
}
©️2020 CSDN 皮肤主题: 黑客帝国 设计师:上身试试 返回首页