【BZOJ 1021】[SHOI2008]Debt 循环的债务

【题目链接】:http://www.lydsy.com/JudgeOnline/problem.php?id=1021

【题意】

【题解】

设f[i][j][k]表示前i种面值的钱币;
第一个人当前的钱数为j,第二个人当前的钱数为k;
所需要的最小交换钱币次数;
这里第三个人的钱数就是sum-j-k;
然后我们以钱币的种类划分成6个阶段进行这样的DP;
(这里我们可以一开始通过a,b,c处理出最后第一个人该有多少钱、第二个人该有多少钱…)
DP的依据就是;
同一种类的钱币;
只要确定了某个人要增加或者减少多少个这种类型的钱币个数;
那么最佳的方案就确定了;
即不会出现从A转到B再转到C的情况。
对于这种,A可以直接转到C..
那么也就是说
这种类型的钱如果第一个人的改变量为da,第二个人的改变量为db;
那么最小的交换次数就能确定;
即(abs(da)+abs(db)+abd(da+db))/2
这是最佳的方案;
(同一种钱币)
根据这个规则
枚举第一个人的钱数、第二个人的钱数、这种钱币第一个人最后有多少张,第二个人有多少张.
进行一个类似背包的DP就好.

【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%lld",&x)
#define ref(x) scanf("%lf",&x)

typedef pair<int, int> pii;
typedef pair<LL, LL> pll;

const int dx[9] = { 0,1,-1,0,0,-1,-1,1,1 };
const int dy[9] = { 0,0,0,-1,1,-1,1,-1,1 };
const int val[7] = { 0,1,5,10,20,50,100 };
const double pi = acos(-1.0);
const int N = 1e3+100;
const int INF = 0x3f3f3f3f;

int total[4], cnt[4][7],tot[7],sum;
int f[2][N][N],a,b,c,target[3],pre,now;

#define UPD(x,y) (x = min(x,y))

int main()
{
    //freopen("F:\\rush.txt", "r", stdin);
    rei(a), rei(b), rei(c);
    rep1(i, 1, 3)
        rep2(j, 6, 1)
        {
            rei(cnt[i][j]);
            total[i] += val[j] * cnt[i][j];
            tot[j] += cnt[i][j];
            sum += val[j] * cnt[i][j];
        }
    target[1] = total[1] - a + c;
    target[2] = total[2] - b + a;
    if (target[1] < 0 || target[2] < 0 || sum - target[1] - target[2] < 0)
    {
        puts("impossible");
        return 0;
    }

    pre = now = 0;
    memset(f[pre], INF, sizeof f[pre]);
    f[pre][total[1]][total[2]] = 0;
    rep1(i, 1, 6)
    {
        pre = now;
        now = now ^ 1;
        memset(f[now], INF, sizeof f[now]);
        rep1(j, 0, sum)
        {
            int t = sum - j;
            rep1(k, 0, t)
            {
                if (f[pre][j][k] == INF) continue;
                UPD(f[now][j][k], f[pre][j][k]);
                //assert f[pre][j][k]!=INF
                rep1(q, 0, tot[i])
                {
                    int r = tot[i] - q;
                    rep1(w, 0, r)
                    {
                        int da = q - cnt[1][i], db = w - cnt[2][i];
                        int cnta = j + da*val[i], cntb = k + db*val[i];
                        if (cnta < 0 || cntb < 0 || sum - cnta - cntb < 0) continue;
                        UPD(f[now][cnta][cntb], f[pre][j][k] + (abs(da) + abs(db) + abs(da + db)) / 2);
                    }
                }
            }
        }
    }
    if (f[now][target[1]][target[2]] == INF) return puts("impossible"), 0;
    printf("%d\n", f[now][target[1]][target[2]]);
    //printf("\n%.2lf sec \n", (double)clock() / CLOCKS_PER_SEC);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值