CCF CSP认证201612-4 压缩编码(动态规划)

201612-4 压缩编码

题目
在这里插入图片描述

思路

看了半天明白了是果子合并问题加上只能相邻合并的限制条件。奈何不会dp,只能贪心混分。混分代码就不放了。

然后我学习了一下大佬们的dp。有个类似的经典问题,石子合并问题。其状态转移方程:
状态转移方程
正常递推不优化的话也可以AC,大概2.7s。用四边形不等式优化一下就60+ms了。

AC代码如下

#include<cstdio>
#include<algorithm>
using namespace std;
const int inf=1e8;
int n,dp[1001][1001],sum[1001][1001],t[1001];
int kmin[1001][1001];//记录使dp[i][j]最小的k

int main(){
 	scanf("%d",&n);
 	fill(dp[0],dp[0]+1001*1001,inf);
 	for(int i=0;i<n;i++){
  		scanf("%d",&t[i]);
  		dp[i][i]=0;
  		sum[i][i]=t[i];
  		kmin[i][i]=i;
 	}
 	for(int len=2;len<=n;len++){
  		for(int i=0;i<n&&i+len-1<n;i++){
   			int j=i+len-1;
   			for(int k=kmin[i][j-1];k<=kmin[i+1][j];k++){
    				sum[i][j]=sum[i][k]+sum[k+1][j];
    				if(dp[i][k]+dp[k+1][j]+sum[i][j]<dp[i][j]){
     					dp[i][j]=dp[i][k]+dp[k+1][j]+sum[i][j];
     					kmin[i][j]=k;
    				}
    			} 
    			/*优化前的代码
    			for(int k=i;k<=j;k++){
    				sum[i][j]=sum[i][k]+sum[k+1][j];
    				dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[i][j]);
   			}
   			*/
  		}
 	}
 	printf("%d\n",dp[0][n-1]);
 	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值