矩阵翻硬币(大数开平方)

矩阵翻硬币

问题描述
  小明先把硬币摆成了一个 n 行 m 列的矩阵。

随后,小明对每一个硬币分别进行一次 Q 操作。

对第x行第y列的硬币进行 Q 操作的定义:将所有第 ix 行,第 jy 列的硬币进行翻转。

其中i和j为任意使操作可行的正整数,行号和列号都是从1开始。

当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹——所有硬币均为正面朝上。

小明想知道最开始有多少枚硬币是反面朝上的。于是,他向他的好朋友小M寻求帮助。

聪明的小M告诉小明,只需要对所有硬币再进行一次Q操作,即可恢复到最开始的状态。然而小明很懒,不愿意照做。于是小明希望你给出他更好的方法。帮他计算出答案。
输入格式
  输入数据包含一行,两个正整数 n m,含义见题目描述。
输出格式
  输出一个正整数,表示最开始有多少枚硬币是反面朝上的。
样例输入
2 3
样例输出
1
数据规模和约定
  对于10%的数据,n、m <= 10^3;
  对于20%的数据,n、m <= 10^7;
  对于40%的数据,n、m <= 10^15;
  对于10%的数据,n、m <= 10^1000(10的1000次方)。

  1. 解题思路

这种方法很麻烦,小数据还能应付,像题目中要求有1000位数,根本不可能,所以有必要另避蹊径。从简单到复杂,慢慢分析,看有什么规律:
先看 n = 1 的情况:对于(1 , m),只要看它翻转的次数奇偶就能确定它最终的状态。因为 x = 1, 每次第一行都要参与翻转,当 y 能整除 m 的时候,(1 , m)会翻转,(1 , m)全过程翻转的次数取决于 m 的约数个数,1 的约数个数为1 , 3 的约数个数为2, 5 的约数个数为2, 9 的约数个数为3。当 m = k^2 (k = 1 ,2 ,3···) 其约数个数为奇数,否则 其约数个数为偶数。 因为一般数约数都是成对出现,而一个数的平方数,有两个约数相等。
所以,最后(1 , m) m = k^2 (k = 1 ,2 ,3···) 最终状态为0,其他则为1。
而最后0的个数总和 count = sqrt(m) , 取整。
再来看一般情况:(n , m)最后状态是什么?现在行的变化也是它翻转的因素。从上面容易推出,当m确定后,他的翻转次数为 n 的约数个数。而(n , m)翻转的次数 = (n的约数个数 * m的约数个数)。刚才分析了,只有在(n , m)翻转的次数为奇数时 它的最终状态为 0。而只有 奇数*奇数 = 奇数,所以n ,m的约数个数必须为奇数,即: n = k^2 (k = 1 ,2 ,3···) 且 m = j^2 (j = 1 ,2 ,3···)。
最后得出结论:
对于n行m列矩阵,经过 Q 操作后 反面的次数 count = sqrt(n) * sqrt(m) ,(取整后再相乘)。
终于是找到了公式,可是又有了新的难题,怎么对1000位数开方呢?这里先给出定理:
假设位数为len的整数,开方取整后为一个lenSqrt位数。
当len为偶数,lenSqrt = len / 2 .
当len为奇数,lenSqrt = (len / 2) + 1 .
证明很简单,这里就不证了。
现在就简单了,位数确定了从高位到低位一位一位地确定。比如:sqrt(1028) ,表示对1028开方取整
它开方取整后两位数.先看第一位:
取 0, 00 * 00 < 1028 所以sqrt(1028) > 00
取 1, 10 * 10 < 1028 所以sqrt(1028) > 10
取 2, 20 * 20 < 1028 所以sqrt(1028) > 20
取 3, 30 * 30 < 1028 所以sqrt(1028) > 30
取 4, 40 * 40 > 1028 所以sqrt(1028) < 40 , 所以第一位取 3 。
第二位:
取 0, 30 * 30 < 1028 所以sqrt(1028) > 30
取 1, 31 * 31 < 1028 所以sqrt(1028) > 31
取 2, 32 * 32 < 1028 所以sqrt(1028) > 32
取 3, 33 * 33 > 1028 所以sqrt(1028) < 33 , 所以sqrt(1028) = 32 。
大数是一样的道理,只不过大数用字符串保存,字符串相乘也要自己来实现。

  1. 代码实现
import java.math.BigInteger;
import java.util.Arrays;
import java.util.Scanner;
public class Main {
	public static void main(String[] args) {
	Scanner sc=new Scanner(System.in);
	String s1=sc.next();
	String s2=sc.next();
	System.out.println(sqrt(s1).multiply(sqrt(s2)));
	}

	private static BigInteger sqrt(String s) {
		int length=s.length();
		int len =0;
		if(length%2==0)
			len=length/2;
		else
			len=length/2+1;
		char[] sarr=new char[len];
		Arrays.fill(sarr, '0');
		BigInteger target=new BigInteger(s);
		for(int pos=0;pos<len;pos++) {
			for(char c='1';c<='9';c++) {
				sarr[pos]=c;
				BigInteger pow=new BigInteger(String.valueOf(sarr)).pow(2);
				if(pow.compareTo(target)==1) {
					sarr[pos]-=1;
					break;
				}
			}
		}
		return new BigInteger(String.valueOf(sarr));
	}
	
}

4.总结
当数据规模很大时,用模拟,等常规方法根本不可能在规定的时间(一般为2s)内算出结果。这个时候就需要仔细分析题目,透过现象看本质。将复杂问题转化为求简单问题的解。当然一定的数学知识是关键,它往往能简化问题。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值