基于深度学习的低剂量CT图像去噪算法研究1

本文探讨了基于深度学习的低剂量CT图像去噪算法,通过引入Wasserstein距离和SSIM损失,改进了GAN框架。实验表明,提出的算法在保持结构信息方面表现优秀,尤其是在SSIM指标上超过其他方法,但在PSNR和RMSE上略逊于RED-CNN。
摘要由CSDN通过智能技术生成

基于深度学习的低剂量CT图像去噪算法研究1

文章一:
Low-Dose CT Image Denoising Using a Generative Adversarial Network With a Hybrid Loss Function for Noise Learning
主要内容:
第一部分。引言部分:
通常用来解决低剂量CT图像去噪的有三种不同的方法:

  1. sinogram filter
    在CT图像重建之前,原始数据或者它的对数形式可以被滤波处理,正弦域的噪声特性是容易被知道的,一些经典的方法包括:双边滤波法,自适应结构法,加权最小二乘法,但这些方法的缺点在于:空间分辨率损失和边缘模糊
  2. iterative reconstruction
    迭代重建的方法是优化目标函数,增强投影数据的统计特性,真实图像的先验信息和成像系统的参数;迭代重建的方法包括:字典学习,非局部均值,低秩,总方差,方差等。
    缺点:迭代方法的几何参数和校正步骤是不公开的,且计算的成本比较高,但得到的图像质量是明显的。
  3. post-processing
    直接对重建后的CT图像进行处理,NLM, BM3D,但处理后的图像仍然存在平滑度和残差问题。
  4. 深度学习的方法
    近年来,深度学习的方法也被用于低剂量CT图像去噪的领域,RED-CNN,但最终图像会出现外观模糊,缺少细节等问题,CNN网络的目的是使恢复后的CT图像与正常剂量的CT图像的均方误差最小,为了解决这个限制,引入了GAN,为了解决GAN训练困难的问题&#
### 低剂量CT图像去噪的代码实现 对于低剂量CT图像去噪研究深度学习方法已经取得了显著进展。这些技术通常基于卷积神经网络(CNN),尤其是U-Net架构及其变体,在处理医学影像方面表现出色[^1]。 下面是一个简化版的PyTorch U-Net模型用于低剂量CT图像去噪的例子: ```python import torch from torch import nn import torchvision.transforms as transforms class UNet(nn.Module): def __init__(self, in_channels=1, out_channels=1): super(UNet, self).__init__() # Encoder部分 self.enc1 = nn.Sequential( nn.Conv2d(in_channels, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True)) self.pool1 = nn.MaxPool2d(kernel_size=2) self.enc2 = nn.Sequential( nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True)) # Decoder部分 self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2) self.dec1 = nn.Sequential( nn.Conv2d(128, 64, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, out_channels, kernel_size=1)) def forward(self, x): enc1_out = self.enc1(x) pool1_out = self.pool1(enc1_out) enc2_out = self.enc2(pool1_out) upconv1_out = self.upconv1(enc2_out) concat1_out = torch.cat([upconv1_out, enc1_out], dim=1) dec1_out = self.dec1(concat1_out) return dec1_out ``` 为了训练这个模型,可以采用均方误差(MSE)作为损失函数,并利用Adam优化器来最小化该损失。此外,建议使用预处理后的数据集进行实验,确保输入图片尺寸一致并进行了标准化处理。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值