✨个人主页欢迎您的访问
✨扩散模型基本原理✨
扩散模型(Diffusion Models)近年来在计算机视觉领域引起了广泛关注,尤其在图像生成和图像去噪任务中取得了显著的成果。扩散模型的核心思想来源于物理学中的扩散过程,通过逐步添加噪声并反向模拟去噪过程,最终恢复出清晰的图像。在图像去噪领域,扩散模型的表现优于传统方法,且具备生成性强、结构化处理能力等优点。本文将深入探讨扩散模型在图像去噪中的应用,介绍其基本原理,展示相应的代码示例,并与传统的去噪模型进行对比。
扩散模型的灵感来源于马尔可夫过程。在训练阶段,扩散模型通过多步向图像添加噪声,逐渐将其破坏成纯噪声图像。然后在推理阶段,模型通过反向过程逐步恢复图像,最终生成去噪后的清晰图像。具体而言,扩散模型的核心过程可以分为两个阶段:正向扩散(Forward Diffusion)和逆向生成(Reverse Generation)。

1.正向扩散(Forward Diffusion)
- 这个过程从真实图像开始,逐步向其添加噪声。假设原始图像是 x0,经过 T 步噪声添加,生成 xT,直到图像变成纯噪声。
- 该过程通过一个逐步增加噪声的方式,通常是高斯噪声。每一步的噪声添加是通过一个线性调度过程来控制的。
在正向扩散过程中,模型从真实图像开始,逐步添加噪声,最终将图像转换为纯噪声。这个过程可以用以下公式表示:
其中,βt 是一个预定义的噪声调度参数,控制每一步添加的噪声量。
2.逆向生成(Reverse Generation)
- 反向过程是从纯噪声开始,逐步去噪还原图像的过程。这个过程可以看作是一个条件生成过程