扩散模型(Diffusion Models)用于图像去噪:开启图像去噪模型新前沿

✨个人主页欢迎您的访问

✨扩散模型基本原理✨

扩散模型(Diffusion Models)近年来在计算机视觉领域引起了广泛关注,尤其在图像生成和图像去噪任务中取得了显著的成果。扩散模型的核心思想来源于物理学中的扩散过程,通过逐步添加噪声并反向模拟去噪过程,最终恢复出清晰的图像。在图像去噪领域,扩散模型的表现优于传统方法,且具备生成性强、结构化处理能力等优点。本文将深入探讨扩散模型在图像去噪中的应用,介绍其基本原理,展示相应的代码示例,并与传统的去噪模型进行对比。

扩散模型的灵感来源于马尔可夫过程。在训练阶段,扩散模型通过多步向图像添加噪声,逐渐将其破坏成纯噪声图像。然后在推理阶段,模型通过反向过程逐步恢复图像,最终生成去噪后的清晰图像。具体而言,扩散模型的核心过程可以分为两个阶段:正向扩散(Forward Diffusion)逆向生成(Reverse Generation)

扩散模型(Diffusion model)

1.正向扩散(Forward Diffusion)

  • 这个过程从真实图像开始,逐步向其添加噪声。假设原始图像是 x0,经过 T 步噪声添加,生成 xT​,直到图像变成纯噪声。
  • 该过程通过一个逐步增加噪声的方式,通常是高斯噪声。每一步的噪声添加是通过一个线性调度过程来控制的。

在正向扩散过程中,模型从真实图像开始,逐步添加噪声,最终将图像转换为纯噪声。这个过程可以用以下公式表示:

q(x_t|x_{t-1})=\mathcal{N}(x_t;\sqrt{1-\beta_t}x_{t-1},\beta_tI)

其中,βt​ 是一个预定义的噪声调度参数,控制每一步添加的噪声量。

2.逆向生成(Reverse Generation)

  • 反向过程是从纯噪声开始,逐步去噪还原图像的过程。这个过程可以看作是一个条件生成过程
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喵了个AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值