java实现LRU缓存机制leetcode146

运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。
实现 LRUCache 类:

LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。

进阶:你是否可以在 O(1) 时间复杂度内完成这两种操作?

示例:

输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4

提示:

1 <= capacity <= 3000
0 <= key <= 3000
0 <= value <= 104
最多调用 3 * 104 次 get 和 put

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/lru-cache
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

想要了解LRU缓存机制可以看看这篇博客:
链接: LRU.

我们可以通过现有的集合类LinkedHashMap

class LRUCache extends LinkedHashMap<Integer, Integer>{
    private int capacity;
    
    public LRUCache(int capacity) {
        super(capacity, 0.75F, true);
        this.capacity = capacity;
    }

    public int get(int key) {
        return super.getOrDefault(key, -1);
    }

    public void put(int key, int value) {
        super.put(key, value);
    }

    @Override
    protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
        return size() > capacity; 
    }
}

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/lru-cache/solution/lruhuan-cun-ji-zhi-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

第二中就是面试管希望看到的手写一个LinkedHashMap

public class LRUCache {
//首先写一个node节点
//双向链表+hashmap
class LRUCache {
    class DLinkedNode{
        int key;
        int value;
        DLinkedNode pre;
        DLinkedNode next;
        public DLinkedNode(){}
        public DLinkedNode(int key1,int value1){
        key =key1;
        value =value1;
        }
    }
    private Map<Integer,DLinkedNode> cache = new HashMap<Integer,DLinkedNode>();
    private int size;//大小
    private int capacity;//链表的容量
    private DLinkedNode head,tail;

    public LRUCache(int capacity) {
        this.size =0;
        this.capacity =capacity;
        head = new DLinkedNode();
        tail = new DLinkedNode();
        head.next = tail;
        tail.pre = head;
    }
    
    public int get(int key) {
        DLinkedNode node= cache.get(key);
        if(node==null){
            return -1;
        }
        moveToHead(node);
        return node.value;
    }
    
    public void put(int key, int value) {
        DLinkedNode node = cache.get(key);
        //查看cache中是否已经有了key
        if(node==null){
            DLinkedNode newnode = new DLinkedNode(key,value);
             cache.put(key, newnode);//没有的话将key,和DLinkedNode节点放入
            addToHead(newnode);//双向链表中将newnode节点放入头部
            ++size;
            if(size>capacity){
            DLinkedNode renode = removetail();
            cache.remove(renode.key);
            --size;
            }
        }else{
                node.value = value;
                moveToHead(node);
        }
    }

    private void addToHead(DLinkedNode node){
        head.next.pre = node;
        node.next = head.next;
        node.pre=head;
        head.next = node;
    }
    private DLinkedNode removetail(){
        DLinkedNode node = tail.pre;
        removeNode(node);
        return node;
    }
    private void removeNode(DLinkedNode node){
        node.pre.next = node.next;
        node.next.pre = node.pre;
    }
    private void moveToHead(DLinkedNode node){
        removeNode(node);
        addToHead(node);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值