运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制 。
实现 LRUCache 类:
LRUCache(int capacity) 以正整数作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字已经存在,则变更其数据值;如果关键字不存在,则插入该组「关键字-值」。当缓存容量达到上限时,它应该在写入新数据之前删除最久未使用的数据值,从而为新的数据值留出空间。
进阶:你是否可以在 O(1) 时间复杂度内完成这两种操作?
示例:
输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]
解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1); // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1); // 返回 -1 (未找到)
lRUCache.get(3); // 返回 3
lRUCache.get(4); // 返回 4
提示:
1 <= capacity <= 3000
0 <= key <= 3000
0 <= value <= 104
最多调用 3 * 104 次 get 和 put
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/lru-cache
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
想要了解LRU缓存机制可以看看这篇博客:
链接: LRU.
我们可以通过现有的集合类LinkedHashMap
class LRUCache extends LinkedHashMap<Integer, Integer>{
private int capacity;
public LRUCache(int capacity) {
super(capacity, 0.75F, true);
this.capacity = capacity;
}
public int get(int key) {
return super.getOrDefault(key, -1);
}
public void put(int key, int value) {
super.put(key, value);
}
@Override
protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
return size() > capacity;
}
}
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/lru-cache/solution/lruhuan-cun-ji-zhi-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
第二中就是面试管希望看到的手写一个LinkedHashMap
public class LRUCache {
//首先写一个node节点
//双向链表+hashmap
class LRUCache {
class DLinkedNode{
int key;
int value;
DLinkedNode pre;
DLinkedNode next;
public DLinkedNode(){}
public DLinkedNode(int key1,int value1){
key =key1;
value =value1;
}
}
private Map<Integer,DLinkedNode> cache = new HashMap<Integer,DLinkedNode>();
private int size;//大小
private int capacity;//链表的容量
private DLinkedNode head,tail;
public LRUCache(int capacity) {
this.size =0;
this.capacity =capacity;
head = new DLinkedNode();
tail = new DLinkedNode();
head.next = tail;
tail.pre = head;
}
public int get(int key) {
DLinkedNode node= cache.get(key);
if(node==null){
return -1;
}
moveToHead(node);
return node.value;
}
public void put(int key, int value) {
DLinkedNode node = cache.get(key);
//查看cache中是否已经有了key
if(node==null){
DLinkedNode newnode = new DLinkedNode(key,value);
cache.put(key, newnode);//没有的话将key,和DLinkedNode节点放入
addToHead(newnode);//双向链表中将newnode节点放入头部
++size;
if(size>capacity){
DLinkedNode renode = removetail();
cache.remove(renode.key);
--size;
}
}else{
node.value = value;
moveToHead(node);
}
}
private void addToHead(DLinkedNode node){
head.next.pre = node;
node.next = head.next;
node.pre=head;
head.next = node;
}
private DLinkedNode removetail(){
DLinkedNode node = tail.pre;
removeNode(node);
return node;
}
private void removeNode(DLinkedNode node){
node.pre.next = node.next;
node.next.pre = node.pre;
}
private void moveToHead(DLinkedNode node){
removeNode(node);
addToHead(node);
}
}