剑指offer 斐波那契数列

1.题目

大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0,n<=39)。

来源:剑指offer
链接:https://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tpId=13&tqId=11160&tPage=1&rp=1&ru=%2Fta%2Fcoding-interviews&qru=%2Fta%2Fcoding-interviews%2Fquestion-ranking

2.我的题解

2.1 数组存储

斐波那契数列的性质不必多说。
最直观的解法是调用递归,但是显然时间复杂度为O(2^n),于是想着用数组存储之前的值。

class Solution {
    int value[40];
public:
    int Fibonacci(int n) {
        value[0]=0,value[1]=1;
        for(int i=2;i<=n;i++)value[i]=value[i-1]+value[i-2];
        return value[n];
    }
};

时间复杂度:O(n)
空间复杂度:O(n)

3.别人的题解

一山更比一山高啊,我以为优化了就沾沾自喜,评论区大佬的解法让我自惭形秽。

3.1三个int的解法

每一次仅用到两个加数与一个和数。

class Solution {
public:
    int Fibonacci(int n) {
        if(n==0)return 0;
        if(n==1)return 1;
        int sum=0,one=0,two=1;
        for(int i=2;i<=n;i++){
            sum=one+two;
            one=two;
            two=sum;
        }
        return sum;
    }
};

时间复杂度:O(n)
空间复杂度:O(1)

3.2 两个int的解法

瓦特?还能更少?三个数具有和的关系,所以有一个数可以由另外两个推出。

class Solution {
public:
    int Fibonacci(int n) {
        int a=0,b=1;
        while(n-->0){
            b=a+b;
            a=b-a;
        }
        return a;
    }
};

时间复杂度:O(n)
空间复杂度:O(1)

4.总结与反思

(1)生命不息,优化不止。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值