美团2016年编程题:直方图最大矩形面积

题目说明:

有一个直方图,用一个整数数组表示,其中每列的宽度为1,求所给直方图包含的最大矩形面积。比如,对于直方图[2,7,9,4],它所包含的最大矩形的面积为14(即[7,9]包涵的7x2的矩形)。

给定一个直方图A及它的总宽度n,请返回最大矩形面积。保证直方图宽度小于等于500。保证结果在int范围内。

测试样例:

输入:[2,7,9,4,1],5
输出:14

题目分析:

方法一:

简单分析,要求最大的矩形面积,可以求出以每一列为中心基准可构成的矩形面积,然后找到其中的最大值即可。而要求解以某列为中心基准可构成的矩形面积,需要保证该列的前面,后面列的高度要高于该列,如此才能构成矩形。

方法二:

和方法一类似,关键在于方法二将每一列视作矩形的右边界。要求最大矩形面积,其实就是求解相邻的n列所构成的矩形面积,注意矩形的高度应当是这n列中的最短者,因此以每一列作为矩形的右边界,不断往左推动左边界,增加矩形的宽度,同时不断更新矩形的高度,并更新面积最大者即可。

python实现代码:

方法一:

class MaxInnerRec:
    def countArea(self, A, n):
        res = 0
        length = 0
        for i in range(n):
            for j in range(i+1, n):
                if A[i] <= A[j]:
                    length += 1
                else:
                    break
            for j in range(i-1, -1, -1):
                if A[i] <= A[j]:
                    length += 1
                else:
                    break
            temp = A[i] * (length + 1)
            if temp > res:
                res = temp
            length = 0     # 注意每一列计算完成之后length应当归0
        return res

m = MaxInnerRec()
print(m.countArea([2,7,9,4,1],5))

方法二:

class MaxInnerRec:
    def countArea(self, A, n):
        maxarea = 0
        for i in range(n):
            minheight = A[i]
            for j in range(i-1, -1, -1):
                minheight = min(minheight, A[j])
                maxarea = max(maxarea, (i - j + 1) * minheight)
        return maxarea

m = MaxInnerRec()
print(m.countArea([2,7,9,4,1],5))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值