题目说明:
有一个直方图,用一个整数数组表示,其中每列的宽度为1,求所给直方图包含的最大矩形面积。比如,对于直方图[2,7,9,4],它所包含的最大矩形的面积为14(即[7,9]包涵的7x2的矩形)。
给定一个直方图A及它的总宽度n,请返回最大矩形面积。保证直方图宽度小于等于500。保证结果在int范围内。
测试样例:
输入:[2,7,9,4,1],5
输出:14
题目分析:
方法一:
简单分析,要求最大的矩形面积,可以求出以每一列为中心基准可构成的矩形面积,然后找到其中的最大值即可。而要求解以某列为中心基准可构成的矩形面积,需要保证该列的前面,后面列的高度要高于该列,如此才能构成矩形。
方法二:
和方法一类似,关键在于方法二将每一列视作矩形的右边界。要求最大矩形面积,其实就是求解相邻的n列所构成的矩形面积,注意矩形的高度应当是这n列中的最短者,因此以每一列作为矩形的右边界,不断往左推动左边界,增加矩形的宽度,同时不断更新矩形的高度,并更新面积最大者即可。
python实现代码:
方法一:
class MaxInnerRec:
def countArea(self, A, n):
res = 0
length = 0
for i in range(n):
for j in range(i+1, n):
if A[i] <= A[j]:
length += 1
else:
break
for j in range(i-1, -1, -1):
if A[i] <= A[j]:
length += 1
else:
break
temp = A[i] * (length + 1)
if temp > res:
res = temp
length = 0 # 注意每一列计算完成之后length应当归0
return res
m = MaxInnerRec()
print(m.countArea([2,7,9,4,1],5))
方法二:
class MaxInnerRec:
def countArea(self, A, n):
maxarea = 0
for i in range(n):
minheight = A[i]
for j in range(i-1, -1, -1):
minheight = min(minheight, A[j])
maxarea = max(maxarea, (i - j + 1) * minheight)
return maxarea
m = MaxInnerRec()
print(m.countArea([2,7,9,4,1],5))