Andrew NG深度学习课程第二周logistic回归模型编程大作业

本文档展示了如何实现和优化一个基于逻辑回归的分类模型。代码包括权重和偏置的初始化、前向传播、梯度计算、梯度下降优化以及模型评估。模型在训练集和测试集上进行了预测,并对训练和测试结果进行了可视化。重点讨论了数据预处理、权重初始化对模型训练的影响以及学习率的选择。
摘要由CSDN通过智能技术生成

参考资料:大佬的博客

import numpy as np
import matplotlib.pyplot as plt
import h5py
from lr_utils import load_dataset

def sigmoid(z):
    """
    :param z: 任何大小的标量或者np数组
    :return:sigmoid(z)
    """
    return 1.0/(1.0+np.exp(-z))

def initialize(dim):
    """
    :param dim: 权重w的维度
    :return: (w,b)
    """
    w = np.zeros((dim, 1))
    # w = np.random.random((dim, 1))*.001
    b = 0
    assert w.shape == (dim, 1)
    assert isinstance(b, (int, float))

    return (w, b)

def propagate(X, Y, w, b):
    """
    :param X: 输入样本的属性,维度为(px*py*3, nums),其中px,py,nums分别表示输入图片的宽高和数量
    :param Y: 输入样本的标签,正类为1,负类为0,维度为(1, nums)
    :param w: 模型的权重,维度为(px*py*3, 1)
    :param b: 模型的偏置,维度为(1,)
    :return:
        --cost: 逻辑回归的对数似然成本
        --dw  : w在更新过程中的梯度,维度为(px*py*3, 1)
        --db  : b在更新过程中的梯度,维度为(1,)
    """

    m = X.shape[1]
    Z = np.dot(w.T, X) + b
    A = sigmoid(Z)
    dz = A - Y
    cost = (-1.0/m)*np.sum(Y*np.log(A)+(1-Y)*np.log(1-A))
    dw = (1.0/m)*np.dot(X, dz.T)
    db = (1.0/m)*np.sum(dz)

    assert dw.shape == w.shape
    assert isinstance(db, float)
    cost = np.squeeze(cost)
    assert cost.shape == ()

    grids = {"dw": dw,
            "db": db}

    return cost, grids

def optimize(X, Y, w, b, iterations, lr, print_cost=True):
    """
    此函数通过运行梯度下降算法来优化w和b
    :param X: 输入样本的属性,维度为(px*py*3, nums),其中px,py,nums分别表示输入图片的宽高和数量
    :param Y: 输入样本的标签,正类为1,负类为0,维度为(1, nums)
    :param w: 模型的权重,维度为(px*py*3, 1)
    :param b: 模型的偏置,维度为(1,)
    :param iterations: 迭代次数
    :param lr: 学习率
    :param print_cost: 是否每个100个迭代打印cost
    :return:
        --params: 包含权重w和偏置b的字典
        --cost  : 优化期间计算的cost列表,用于绘制loss下降曲线
        --grid  : 包含权重w和偏差b在更新过程中的下降梯度的字典
    """
    costs = []
    for i in range(iterations):
        cost, grids = propagate(X, Y, w, b)
        dw, db = grids["dw"], grids["db"]

        w, b = w-lr*dw, b-lr*db

        if i%100==0:
            costs.append(cost)
            if print_cost:
                print(str(i) + "th cost is: ", cost)

    params = {"w": w,
              "b": b}
    grids = {"dw": dw,
             "db": db}
    return (params, grids, costs)

def predict(w, b, X):
    """
    使用logistic回归对样本做出预测
    :param w: 模型的权重,维度为(px*py*3, 1)
    :param b: 模型的偏置,维度为(1,)
    :param X: 输入样本的属性,维度为(px*py*3, nums),其中px,py,nums分别表示输入图片的宽高和数量
    :return:
        --Y_prediction: 包含X中所有图片的预测结果,维度为(1, nums)
    """
    num_samples = X.shape[1]
    Y_predict = np.zeros((1, num_samples))
    w = w.reshape(X.shape[0], 1)

    Z = np.dot(w.T, X) + b
    A = sigmoid(Z)

    for i in range(num_samples):
        Y_predict[0, i] = 0 if A[0, i]<=0.5 else 1
    assert Y_predict.shape == (1, num_samples)

    return Y_predict

def model(X_train, Y_train, X_test, Y_test, iterations=5000, lr=0.005, print_cost=True):
    """
    构建logistic回归模型
    :param X_train: 训练集中的样本属性,为numpy数组,维度为(px*py*3, m_train)
    :param Y_train: 训练集的标签文件,为numpy数组,维度为(1, m_train)
    :param X_test: 测试集中的样本属性,为numpy数组,维度为(px*py*3, m_test)
    :param Y_test: 测试集的标签文件,为numpy数组,维度为(1, m_test)
    :param iterations: 模型的迭代次数
    :param lr: 学习率
    :param print_cost: 是否每个100代打印模型的损失
    :return:
        --d: 包含模型信息的一个字典
    """

    w, b = initialize(X_train.shape[0])

    params, grids, costs = optimize(X_train, Y_train, w, b, iterations, lr, print_cost)

    w, b = params['w'], params['b']

    Y_train_prediction = predict(w, b, X_train)
    Y_test_prediction = predict(w, b, X_test)

    Acc_train = (100 - np.mean(np.abs(Y_train - Y_train_prediction))) / 100
    Acc_test = (100 - np.mean(np.abs(Y_test - Y_test_prediction))) / 100

    print("Acc_trian: ", Acc_train)
    print("Acc_test: ", Acc_test)

    d = {
        "costs": costs,
        "Y_train_prediction": Y_train_prediction,
        "Y_test_prediction": Y_test_prediction,
        "Acc_train": Acc_train,
        "Acc_test": Acc_test,
        "w": w,
        "b": b,
        "lr": lr,
        "iterations": iterations
    }
    return d

def plt_loss_figure(d):
    costs = np.squeeze(d["costs"])
    plt.plot(costs, label="lr="+str(d["lr"]))
    plt.ylabel("cost")
    plt.xlabel("iteration(per hundreds)")
    plt.title("lr="+str(d["lr"]))
    plt.show()

if __name__=="__main__":
    # w, b, X, Y = np.array([[1], [2]]), 2, np.array([[1, 2], [3, 4]]), np.array([[1, 0]])
    train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes = load_dataset()
    train_set_x_orig = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T / 255
    test_set_x_orig = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T / 255

    lrs = [0.01, 0.05, 0.005, 0.0005]
    ds = []
    for lr in lrs:
        d = model(train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, iterations=2500, lr=lr, print_cost=True)
        ds.append(d)
    for i in range(len(ds)):
        plt.plot(np.squeeze(ds[i]["costs"]), label="lr=" + str(ds[i]["lr"]))
    plt.ylabel("cost")
    plt.xlabel("iteration(per hundreds)")
    legend = plt.legend(loc="upper right", shadow=True)
    frame = legend.get_frame()
    frame.set_facecolor("0.90")
    plt.show()

问题1:代码编写完成后训练cost一直为nan
在该模型中,权重的初始化并不是造成这个问题的原因。应当注意对于输入的数据X,是否进行归一化或标准化

问题二:权重的初始化
可直接将权重和偏置全部初始化为0,也可用随机数进行初始化如:

w=np.random.random((dim, 1))
b = np.random.random()

也可使用kaiming初始化,即:

w=np.zeros((dim, 1))
nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')	 # 均匀分布的初始化
nn.init.kaiming_normal_(w, mode='fan_in', nonlinearity='relu')    # 正态分布的初始化
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值