深度学习课后作业

3-2 在线性空间中,证明一个点x到f(x;w)=w_{T}x+b=0的距离为|f(x;w)|/||w||.

解答:取该平面中任意一点x_{0}做向量\overrightarrow{x_{0}x},其中点x到该平面的距离为\overrightarrow{x_{0}x}在平面法向量\overrightarrow{n}上的投影(设n=\overrightarrow{n}),d=\left \| \overrightarrow{x_{0}x} \right \|*cos(\Theta ),\Theta\overrightarrow{x_{0}x}\overrightarrow{n}的夹角。

将图形大概可以作出,取一平面为例,如图

 d=||\overrightarrow{x_{0}x}||*cos(\Theta ),所以

cos\Theta =\frac{d}{||\overrightarrow{x_{0}x}||},即

cos(\Theta )=\frac{|\overrightarrow{x_{0}x}*w|}{||\overrightarrow{x_{0}x}*w||*||w||}=\frac{|\overrightarrow{x}*w-\overrightarrow{x_{0}}*w|}{||\overrightarrow{x_{0}x}||*||w||}=\frac{|f(x;w)-f(x0;w)|}{||\overrightarrow{x_{0}x}||*||w||},因为点x_{0}在平面f(x;w)内,所以有cos(\Theta )=\frac{|f(x;w)|}{||\overrightarrow{x_{0}x}||*||w||},带入到d中得:d=\frac{|f(x;w)|}{||w||}.

3-5 在Logistic回归中,是否可以用\hat y=\sigma (w_{T}x)去逼近正确的标签y,并用平方损失(y-\hat y)^2最小化来优化参数w?

解答:从理论上来说,平方损失函数也可以用于分类问题,但并不适合。首先,最小化平方损失函数本质上等同于在误差服从高斯分布的假设下的极大似然估计,然而大部分分类问题的误差并不服从高斯分布。而且在实际应用中,交叉嫡在和Softmax激活函数的配合下,能够使得损失值越大导数越大,损失值越小导数越小,这就能加快学习速率。然而若使用平方损失函数,则损失越大导数反而越小,学习速率很慢。

所以说,当sigmod为激活函数时,不能使用平方损失函数来优化参数,对于二分类来说,当y f(x;w)>0时,分类器预测正确,并且y f(x;w)越大,模型的预测越准确;当y f(x;w)<0时,分类器预测越不准确,因此,一个好的损失函数应该随着y f(x;w)的增大而减小,所以应用交叉熵损失函数。

3-6 在Softmax回归的风险函数中,如果加上正则化项会有什么影响?

解答:

采用交叉熵损失函数,Softmax回归模型的风险函数为R(w)=-\frac{1}{N}\sum _{n=1}^{N}\sum _{c=1}^{C}\hat y_{c}^ n=-\frac{1}{N}\sum _{n=1}^{N}*(y^n)^T\log \hat y^n

需要注意的是,Softmax回归中,使用的c个权重向量是冗余的,即对所有的权重向量都减去一个同样的向量v,不改变其输出结果。因此,Softmax回归往往需要使用政策话来约束其参数。此外,我们还可以利用这个特效去避免计算Softmax函数时在数值上的溢出问题:

加入正则化后:

R(w)=-\frac{1}{N}\sum _{n=1}^{N}\sum _{c=1}^{C}\hat y_{c}^ n=-\frac{1}{N}\sum _{n=1}^{N}*(y^n)^T\log \hat y^n+\lambda W^TW,

\frac{\partial R(W)}{\partial W}=-\frac{1}{N}\sum _{n=1}^{N}(\hat y_{c}^ n-y^n)x^n-2\lambda W,

更新参数时:W=W+\alpha \frac{1}{N}\sum _{n=1}^{N}(\hat y^n-y^n)x^n-2\lambda W,

从上述计算中可以看出,加入正则化后,在更新参数时每次需要减去2\lambda W,从而使得参数不会太大,便不会造成溢出之类的错误发生,同时也可以抑制过拟合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值