论文速读——Debiased Contrastive Learning for Sequential Recommendation
用于顺序推荐的去偏对比学习
ABSTRACT
当前的顺序推荐系统被提出来利用各种神经技术(例如 Transformer 和图神经网络(GNN))来解决动态用户偏好学习问题。然而,从高度稀疏的用户行为数据中进行推断可能会阻碍顺序模式编码的表示能力。为了解决标签短缺问题,最近提出了对比学习(CL)方法,以两种方式执行数据增强:(i)随机破坏序列数据(例如,随机屏蔽、重新排序); (ii) 跨预定义的对比视图对齐表示。尽管有效,但我们认为当前基于 CL 的方法在解决流行偏见以及区分用户一致性和真实兴趣方面存在局限性。在本文中,我们提出了一种新的推荐去偏对比学习范式(DCRec),它通过自适应一致性感知增强将顺序模式编码与全局协作关系建模统一起来。该解决方案旨在解决推荐系统中的流行度偏差问题。我们的去偏对比学习框架有效地捕获了序列内项目转换的模式以及跨序列的用户之间的依赖关系。我们对各种现实世界数据集的实验表明,DCRec 显着优于最先进的基线,表明其推荐的有效性。为了促进结果的可重复性,我们将 DCRec 的实现公开发布于:https://github.com/HKUDS/DCRec。
1 INTRODUCTION
大量基于神经网络的方法 → \to → 自监督学习(SSL) → \to → 强化学习 → \to → 各种研究领域的现有方法尚未充分解决数据增强中固有的流行偏差。
文中介绍了一个例子,比如一个人订阅了很多关于篮球的栏目,随后订阅了NBA专栏,另一个人订阅了一些热门话题,看见NBA话题很火而关注了它,很多表现优异的模型会认为他们是正对,其实不是。第二个人他并不是因为热爱篮球而订阅的。(这会导致不准确的数据增强,从而误导用户偏好学习。)因此,有效捕获用户意图的兴趣和一致性组成部分并以分离的方式对它们进行建模,对于提高顺序推荐的性能以对抗数据增强中普遍存在的流行度偏差至关重要。
DCRec 使用基于三个语义通道的多通道一致性加权网络将用户一致性与嘈杂的项目交互分开。
贡献:
- 强调了通过以适应性强的方式提取自我监督信号来解决稀疏和嘈杂的用户序列数据中流行度偏差问题的重要性,这种方式可以解开用户的一致性和推荐的实际兴趣。
- 提出了一种新颖的推荐模型,称为DCRec,它通过多通道一致性加权网络解决用户序列数据中的流行度偏差问题。此外,模型采用对比正则化的强度来有效地增强训练数据。
- 在几个现实世界的数据集上证明了我们提出的方法的有效性,方法始终优于最先进的顺序推荐方法,同时减轻了流行度偏差的影响。
2 METHODOLOGY
任务
开发一个个性化排名函数,考虑用户过去的项目序列,并预测用户最有可能采用的下一个项目。
顺序模式编码
为了捕获项目之间的相关性,我们将具有多头 (N ) 通道的自注意力层应用于用户的项目嵌入矩阵。
M H ( H ) = ( h e a d I ∥ h e a d I I ∥ . . . ∥ h e a d n ) ⋅ W D (1) M_H(H) = (head_I \lVert head_{II} \lVert ... \lVert head_n) \cdot W^D \tag 1 MH(H)=(head