论文阅读——MCN4Rec Multi-level Collaborative Neural Network for Next Location Recommendation

文章介绍了一种新的多级协作神经网络模型MCN4Rec,用于解决位置推荐中的复杂相关性和数据稀疏问题。它通过多级表示学习、逐级对比学习和时间类别感知,有效捕捉用户、POI、时间和活动类别间的异构关系,实验结果显示在四大数据集上性能优于现有方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MCN4Rec: Multi-level Collaborative Neural Network for Next Location Recommendation

MCN4Rec:用于下一个位置推荐的多级协作神经网络

概要

下一个位置推荐在各种基于位置的服务中发挥着重要作用,为用户和服务提供商都带来了巨大的价值。现有方法通常使用明确的时间间隔对时间依赖性进行建模,或者从具有丰富上下文信息的定制兴趣点 (POI) 图中学习表示,以捕获 POI 之间的顺序模式。然而,这个问题显然很复杂,因为需要一起考虑各种因素,例如用户的偏好、空间位置、时间上下文、活动类别语义和时间关系,而大多数研究缺乏对协作信号的充分考虑。为了实现这一目标,我们提出了一种新颖的用于下一个位置推荐的多级协作神经网络(MCN4Rec)。具体来说,我们设计了一种具有逐级对比学习的多级视图表示学习,从局部和全局角度协作学习表示,以捕获用户、POI、时间和活动类别之间复杂的异构关系。然后,将因果编码器-解码器应用于签到序列的学习表示以推荐下一个位置。对四个现实世界签到移动数据集的广泛实验表明,我们的模型显着优于下一个位置推荐的现有最先进基线。消融研究进一步验证了所设计的子模块协作的好处。源代码可在 https://github.com/quai-mengxiang/MCN4Rec 获取。

1 INTRODUCTION

基于位置的社会网络(LBSN)的流行使得大量用户通过移动设备分享他们对兴趣点(POI)的体验,从而产生了大量的用户移动性签到数据。这些数据使得下一个地点推荐系统变得更加强大。现有方法在建模时间依赖性、学习表示和图模型方面做出了努力,但仍然存在一些限制,如未能有效学习用户、POI、时间和活动语义之间的相关性,以及数据稀疏性和冷启动问题。

we propose a Multi-Level Collaborative Neural Network for next location Recommendation, called MCN4Rec.

作者提出了一种用于下一个位置推荐的多级协作神经网络,称为 MCN4Rec。

为了缓解冷启动,模型通过对整体的历史轨迹进建模,结合了多级表示学习模块 ,并利用丰富的合作信号来学习各种用户的偏好和POI语义信息。为了捕获复杂的异构关系,模型包含一个多级视图的组件 ,表示学习从多个角度对签到数据进行建模。一个逐级对比表示学习 ,用于鼓励学习统一的语义空间;以及一个类别感知时间表示 ,用于将 POI 类别合并到时间嵌入中。然后,签到序列的表示被发送到因果编码器 以进一步学习序列移动模式,并且下一个位置偏好的推断受到多个解码器的约束。

贡献:

  • 提出了一种新颖的多级协作神经网络模型 MCN4Rec,来解决下一个位置推荐的数据稀疏、冷启动和复杂的相关学习问题。模型有效地利用用户移动数据中的各种丰富的合作信号来提高推荐性能。
  • 设计了一种新颖的逐级对比表示学习框架。通过精心设计的三个子组件,模型实现了签到数据的有效表示学习,捕获用户移动数据中复杂的多种异构交互关系。
  • 对四个现实生活中的出行签到数据集进行了广泛的实验。结果表明,模型在 Acc@1 和 MRR 方面明显优于最先进的基线,平均提高了 11.70% 和 8.28%。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值