
计算机视觉
妄想做大佬的咸鱼
人工智障
展开
-
计算机视觉学习(三):仿射变换将一幅图像放置到另一幅图像中
本例子为通过仿射扭曲变换将图像放置到另一幅图像中,使得它们能够和指定的区域或者标记物对齐。 运行的代码如下: # test.pyfrom PCV.geometry import warp, homographyfrom PIL import Imagefrom pylab import *from scipy import ndimage#放射扭曲im1到im2#打开两...原创 2019-03-19 16:34:23 · 1889 阅读 · 1 评论 -
计算机视觉学习(十):利用Tensorflow基于MNIST数据集识别自己的手写数字
一、卷积神经网络的原理原理部分参考自:https://www.cnblogs.com/chensheng-zhou/p/6380738.html1、关于卷积神经网络 卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点。它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使...原创 2019-06-03 17:08:14 · 941 阅读 · 1 评论 -
计算机视觉学习(九):基于KNN分类法的手势识别
KNN算法原理:KNN(k-nearest neighbor)是一个简单而经典的机器学习分类算法,通过度量”待分类数据”和”类别已知的样本”的距离(通常是欧氏距离)对样本进行分类。这话说得有些绕口,且来分解一番:(1)分类问题都是监督(supervised)问题,也就是说一定数量的样本类别是已知的。(2)既然我们已经有了一批分好类的样本,那么接下来的工作自然应该是通过已知样本训练分...原创 2019-05-19 20:38:38 · 1952 阅读 · 0 评论 -
计算机视觉学习(八):基于BOW的图像检索
原理为了将Bag-of-words模型应用于图像表示,我们可以将图像看作文档,即若干个“视觉词汇”的集合,同样的,视觉词汇相互之间没有顺序。由于图像中的词汇不像文本文档中的那样是现成的,我们需要首先从图像中提取出相互独立的视觉词汇,这通常需要经过三个步骤:特征检测 特征表示 单词本的生成从图像中提取出相互独立的视觉词汇通过观察会发现,同一类目标的不同实例之间虽然存在差异...原创 2019-05-08 19:37:34 · 868 阅读 · 0 评论 -
计算机视觉学习(七):由基础矩阵计算照相机矩阵
基础矩阵原理 基本矩阵体现了两视图几何(对极几何,epipolar geometry)的内在射影几何(projective geometry)关系,基本矩阵只依赖于摄像机的内参KK和外参R,tR,t。 上图是一个两视图的几何描述,其中OO、O′O′是两个相机的光心,两点连线OO′OO′称为基线,基线与图像平面的交点ee、e′e′称为对极点,其中ll、l′l′分别是图像点...原创 2019-04-19 16:54:52 · 3039 阅读 · 1 评论 -
计算机视觉学习(六):标定手机相机参数
本次实验使用的是张正友的相机标定方法,该方法介于传统的标定方法和自标定方法之间,使用简单实用性强,有以下优点: 不需要额外的器材,一张打印的棋盘格即可 标定简单,相机和标定板可以任意放置 标定的精度高下面是张正友相机标定法的详解相机的内参数设P=(X,Y,Z)P=(X,Y,Z)为场景中的一点,在针孔相机模型中,其要经过以下几个变换,最终变为二维图像上的像点p=(μ...原创 2019-04-13 16:49:49 · 5588 阅读 · 2 评论 -
计算机视觉学习(五):照相机标定及增强现实
(一)照相机标定之以平面和标记物进行姿态估计 使用平面物体作为标记物,来计算用于新视图投影矩阵的例子。将图像的特征和对齐后的标记匹配,计算出单应性矩阵,然后用于计算照相机的姿态。 下面是运行的代码:from pylab import *from PIL import Imagefrom PCV.geometry import homography, camerafrom ...原创 2019-04-02 21:43:40 · 736 阅读 · 0 评论 -
计算机视觉学习(四):全景图像拼接
这次主要做的是基于sift特征匹配然后使用RANSAC全景图像拼接下面简单地对RANSAC算法进行介绍,参考自:https://blog.csdn.net/robinhjwy/article/details/79174914一、RANSAC概述RANSAC算法的输入是一组观测数据,一个可以解释或者适应于观测数据的参数化模型,一些可信的参数。RANSAC通过反复选择数据中的一组随机子...原创 2019-03-31 12:45:09 · 3170 阅读 · 3 评论 -
计算机视觉学习(二):特征点提取和匹配相关
1、sift特征原理的描述 1.1sift概述: 首先我了解到了兴趣点的概念,兴趣点是图像中明显区别于周围区域的地方,这些兴趣点对于光照、视角相当鲁棒,所以对于图像的兴趣点特征提取的好坏会直接影响到后续分类,识别的精准。而描述子就是对兴趣点提取特征的过程。sift是一种特征描述子。该描述子具有尺度不变性和光照不变性。 1.2sift特征检测的步骤: sift特征检测...原创 2019-03-15 19:38:16 · 6373 阅读 · 1 评论 -
计算机视觉学习(一):图像处理基础
(一)对图像进行一些基本处理1、对图像进行灰度处理,以下是运行的代码:from PIL import Imagefrom pylab import *from matplotlib.font_manager import FontPropertiesfont = FontProperties(fname=r"c...原创 2019-03-05 16:03:43 · 787 阅读 · 0 评论 -
Python3.7环境搭建及opencv安装
今天花了大概两个小时的时间才将这两个装下来并且调试可行, 期间遇到了各种难以言喻的错误和失败。首先,关于安装教程我是参考了以下两篇文章,但是不知道是因为系统不同或者python的更新换代,我没办法完全按照文章中的步骤去成功安装。1、https://blog.csdn.net/qq_38214193/article/details/809970002、https://blog.csdn.net...原创 2019-02-26 19:20:49 · 14854 阅读 · 4 评论 -
计算机视觉学习(十一):图像分割
图像分割是将一幅图像分割成有意义区域的过程。区域可以是图像的前景与背景或者单个对象。这些区域可以利用诸如颜色、边线或近邻相似性等特征构建。代码一 下面给出一个用python-graph工具包计算一幅较小的图的最大流/最小割的简单例子:from pygraph.classes.digraph import digraphfrom pygraph.algorithms.minmax...原创 2019-06-11 14:53:58 · 949 阅读 · 0 评论