4--tensorflow CNN 卷积神经网络

1.什么是卷积神经网络
人工神经网络的一种结构,最常见应用于图片识别,已可以用于其他方面。
卷积也就是说神经网络不再是对每个像素的输入信息做处理了,而是图片上每一小块像素区域进行处理, 这种做法加强了图片信息的连续性.
在每一次卷积的时候, 神经层可能会无意地丢失一些信息. 这时, 池化 (pooling) 就可以很好地解决这一问题. 而且池化是一个筛选过滤的过程, 能将 layer 中有用的信息筛选出来, 给下一个层分析. 同时也减轻了神经网络的计算负担。

2.CNN介绍
cnn是怎么处理信息的:
每一个像素点有RGB三个值,图片的厚度是3,每一次卷积,就是抽取一个大小为Stride的部分,然后每一次抽取会隔一个步长,跨度就是Patch,每次取出的小块图片厚度变厚,但是大小很小,结合到一块就是,长,宽压缩了,厚度变厚了:
在这里插入图片描述
在这里插入图片描述
这就是valid Padding
另一种抽出来汇集起来之后长宽是与原来一样的,叫做same Padding
pooling也有两种方式:max poolingaverage pooling

3.开始实践
我们之前的手写数字识别实践,用的算法,只能保证最后87%的正确率,参考
这是非常低的,如果使用CNN,正确率可以达到96%

首先定义weights,biase,conv,pooling这四个函数:

#初始化权重函数
def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev = 0.1)#产生截断正态分布随机数
    return tf.Variable(initial)

#初始化偏置
def bias_variable(shape):
    initial = tf.constant(0.1,shape = shape)#定义初始值是0.1
    return tf.Variable(initial)

#定义卷积神经网络层
def conv2d(x,W):#定义一个2维的CNN
    #stride[1,x_movement,y_movement,1]步长,每隔多少抽取信息
    #第一个和第四个数必须是1
    return tf.nn.conv2d(x,W,strides = [1,1,1,1],padding = 'SAME')#跨度是1,抽取信息
    
#定义2*2的最大池化   
def max_pool_2x2(x):#池化
    return tf.nn.max_pool(x,ksize = [1,2,2,1],strides = [1,2,2,1],padding = 'SAME')
    #ksize池化窗口的大小

整个结构图如下:
在这里插入图片描述
接下来来写conv1 layer,conv2 layer,func1 layer和func2 layer:

###conv1 layer###第一层卷积
W_conv1 = weight_variable([5,5,1,32])#[filter_height,filter_width,in_channels,out_channels]
#patch 5*5,insize 1,指的是输入灰度图像,只有一通道outsize 32
#过滤器每次取出的小片图片大小是5*5,但是输出的是1个单位的结果,且高度变成了32
b_conv1 = bias_variable([32])#初始化偏置项
#进行卷积,并且用relu激活
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1) #类比于y = x*w + b
#h_conv1之后size是28*28*32
h_pool1 = max_pool_2x2(h_conv1)#池化,14*14*32


###conv2 layer###第二层卷积
w_conv2 = weight_variable([5,5,32,64])#初始化第二层神经层的权重
#patch 5*5,insize 32,outsize 64
b_conv2 = bias_variable([64])#初始化偏置
#将第一层卷积池化后的结果作为第二层卷积的输入
h_conv2 = tf.nn.relu(conv2d(h_pool1,w_conv2) + b_conv2)#14*14*64
h_pool2 = max_pool_2x2(h_conv2)#池化,7*7*64


###func1 layer###全链接层
W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
# h_pool2这个三维的值,转化为二维的
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
#把[n_samples,7*7*64]变成[h_pool2,[-1,7*7*64]]
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)


###func2 layer###输出层
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2) + b_fc2)
#输出层用softmax进行classification处理,算概率

完整程序:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data',one_hot = True)


def compute_accuracy(v_xs,v_ys):
    global prediction
    y_pre = sess.run(prediction,feed_dict = {xs:v_xs,keep_prob:1})
    correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    result = sess.run(accuracy,feed_dict = {xs:v_xs,ys:v_ys,keep_prob:1})
    return result

#初始化权重函数
def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev = 0.1)#产生截断正态分布随机数
    return tf.Variable(initial)

#初始化偏置
def bias_variable(shape):
    initial = tf.constant(0.1,shape = shape)#定义初始值是0.1
    return tf.Variable(initial)

#定义卷积神经网络层
def conv2d(x,W):#定义一个2维的CNN
    #stride[1,x_movement,y_movement,1]步长,每隔多少抽取信息
    #第一个和第四个数必须是1
    return tf.nn.conv2d(x,W,strides = [1,1,1,1],padding = 'SAME')#跨度是1,抽取信息
    
#定义2*2的最大池化   
def max_pool_2x2(x):#池化
    return tf.nn.max_pool(x,ksize = [1,2,2,1],strides = [1,2,2,1],padding = 'SAME')
    #ksize池化窗口的大小

#define placeholder for inputs to network
xs = tf.placeholder(tf.float32,[None,784])#28*28
ys = tf.placeholder(tf.float32,[None,10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs,[-1,28,28,1])
#将输入的xs转成一个4D向量,第2、3维对应图片的宽高,最后一维代表图片的颜色通道数
# 输入的图像为灰度图,所以通道数为1,如果是RGB图,通道数为3
# tf.reshape(xs,[-1,28,28,1])的意思是将xs自动转换成28*28*1的数组
# -1的意思是代表不知道x的shape,它会按照后面的设置进行转换
#print(x_image.shape)#[n_samples,28,28,1]



###conv1 layer###第一层卷积
W_conv1 = weight_variable([5,5,1,32])#[filter_height,filter_width,in_channels,out_channels]
#patch 5*5,insize 1,指的是输入灰度图像,只有一通道outsize 32
#过滤器每次取出的小片图片大小是5*5,但是输出的是1个单位的结果,且高度变成了32
b_conv1 = bias_variable([32])#初始化偏置项
#进行卷积,并且用relu激活
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1) + b_conv1) #类比于y = x*w + b
#h_conv1之后size是28*28*32
h_pool1 = max_pool_2x2(h_conv1)#池化,14*14*32


###conv2 layer###第二层卷积
w_conv2 = weight_variable([5,5,32,64])#初始化第二层神经层的权重
#patch 5*5,insize 32,outsize 64
b_conv2 = bias_variable([64])#初始化偏置
#将第一层卷积池化后的结果作为第二层卷积的输入
h_conv2 = tf.nn.relu(conv2d(h_pool1,w_conv2) + b_conv2)#14*14*64
h_pool2 = max_pool_2x2(h_conv2)#池化,7*7*64


###func1 layer###全链接层
W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
# h_pool2这个三维的值,转化为二维的
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
#把[n_samples,7*7*64]变成[h_pool2,[-1,7*7*64]]
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)


###func2 layer###输出层
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2) + b_fc2)
#输出层用softmax进行classification处理,算概率


#the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices = [1]))#loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#对于大的系统,用AdamOptimizer比较好,AdamOptimizer的学习步长应该更小


sess = tf.Session() #important step

sess.run(tf.initialize_all_variables())



for i in range(1000):
    batch_xs,batch_ys = mnist.train.next_batch(100)
    #batch_xs.shape = (100,784);batch_ys.shape = (100,10)
    #从下载好的MNIST_data中提取出训练数据中的100个
    #不学习整个data,而是每100个学习一下,就效率比较高
    sess.run(train_step,feed_dict = {xs:batch_xs,ys:batch_ys,keep_prob:1.0})
    if i % 50 == 0:
        #计算准确度的函数compute_accuracy
        print(compute_accuracy(mnist.test.images,mnist.test.labels))
        #mnist里面包含了test_data和train_data,用test_data的labels与预测值对比,算准确值,测试功能

整个过程需要一段时间:
在这里插入图片描述
打印出精度一步步提高,能达到97%

参考

### 回答1: 电影评论情感分类是一项重要的自然语言处理任务,旨在自动将电影评论分为正面或负面情感。为了解决这个问题,研究人员已经开发了各种机器学习模型,其中卷积神经网络text-cnn是一种有效的模型。 TensorFlow是一个强大的深度学习库,提供了text-cnn模型的实现。text-cnn模型由多个卷积层和全局最大池化层组成,每个卷积层用于提取文本中的特定特征,而全局最大池化层则用于提取最具代表性的特征。最终,这些特征将被用于分类任务,通过一个全连接层来实现。 与其他情感分类模型相比,text-cnn模型具有许多优点。首先,它可以自适应不同长度的文本输入,并且不需要手动提取特征。其次,text-cnn模型具有较高的分类准确率,并且可以在大规模数据上进行训练,以提高其性能。最后,TensorFlow提供了一个简单的接口来实现text-cnn模型,并且提供了丰富的调试和可视化工具,使得模型的训练和评估变得更加容易。 总之,卷积神经网络text-cnn模型是一种高效、准确的情感分类模型,结合TensorFlow库的支持,可以有效地应用于电影评论等自然语言处理任务中。 ### 回答2: 电影评论情感分类是一类自然语言处理任务,它的目标是对一段文本进行情感分类,预测这段文本表达的情感是正面的(positive)还是负面的(negative)。在实践中,卷积神经网络CNN)已经被广泛应用于情感分类,其中text-cnn模型是最常用的一种。 Text-cnn模型在情感分类任务中的表现优秀,它将文本看作是一种二维结构,其中一个维度是词语,另一个维度是嵌入矩阵中的向量。文本中的词被编码为嵌入向量,并且这些嵌入向量被视为图像的像素。在text-cnn模型中,多个不同大小的卷积核被用来通过卷积操作提取出文本的局部特征。这些局部特征被压缩成一个全局特征向量,并通过一个全连接层进行分类器预测。 TensorFlow是实现text-cnn模型的流行工具之一,它是一个开源的机器学习框架,提供了广泛的API和工具来创建高效的深度学习模型。TensorFlow可以轻松地构建text-cnn模型,而且具有内置的优化器和损失函数,它可以加速模型训练和优化。 总的来说,text-cnn模型是一个强大的情感分类器,它已经在几个领域得到了成功的应用。在使用TensorFlow实现text-cnn模型时,需要注意模型的超参数调整,以及数据预处理和特征工程的优化,这些都可以影响模型的性能和泛化能力。 ### 回答3: 电影评论情感分类是NLP领域的一个基础应用问题,通过对文本进行情感分类可以帮助我们更好地理解用户心理、市场需求等诸多方面。卷积神经网络(CNN)是目前NLP领域应用广泛的深度学习算法,它能够对输入的多维矩阵进行特征提取,逐层降维,最终将特征表示为一维向量。 Text-CNNCNN在NLP领域的应用,它主要通过卷积层和池化层对文本进行特征提取和降维。卷积层通过提取矩阵中的局部特征,池化层通过按照一定的规则对特征进行采样,最终形成一个固定长度的向量作为文本的表示。在情感分类任务中,Text-CNN可以通过对输入的文本进行卷积和池化操作,得到文本的固定长度特征向量,进而输出文本的情感类别。 TensorFlow是当前最受欢迎的深度学习框架之一,它提供了丰富的API和工具,能够方便地构建并训练Text-CNN模型。在构建Text-CNN模型时,首先需要进行文本的预处理,将文本转换为数字表示,然后使用TensorFlow对模型进行定义和训练。 总之,电影评论情感分类是NLP领域一个重要的应用问题,采用Text-CNN模型可以准确有效地对文本进行情感分类,而TensorFlow提供了一个便捷的框架和工具,用于构建和训练Text-CNN模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值