深度学习
逆夏11111
这个作者很懒,什么都没留下…
展开
-
常用函数detect_image/predict
detect_imagepredict可复用于不同模型原创 2022-06-16 17:35:44 · 941 阅读 · 1 评论 -
tensorflow 1.X版本 与2.X版本的区别 sparse_categorical_crossentropy损失函数踩雷
卷积神经网络2.X版本的tensorflow是有Input层的# Create the Student Modelstudent = keras.Sequential( [ keras.Input(shape=(28,28,1)), layers.Conv2D(16,(3,3),strides = (2,2),padding = "same"), layers.LeakyReLU(alpha=0.2),原创 2022-03-02 16:06:31 · 1218 阅读 · 0 评论 -
pytorch Resnet模型
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/blob/master/pytorch_classification/Test5_resnet/model.py转载 2020-08-10 17:26:18 · 167 阅读 · 0 评论 -
pytorch实现图像分类,gpu提速
pytorch图像分类1 数据集数据集:CIFAR-10DOWNLOAD = True #设置成True本来是自动下载数据集的,但是下载失败,所以手动从网上下载数据集,然后将其改成Falsetrain_data = torchvision.datasets.CIFAR10( root = r'D:\python\CIFAR-10', #存储路径 train = True, transform = torchvision.transforms.ToTe原创 2020-08-05 23:10:07 · 1723 阅读 · 4 评论 -
pytorch dropout解决过拟合
训练时误差降得很低了,但是测试的时候,误差很高,说明过拟合了。这里用dropout来处理过拟合。只要在神经网络中加入dropout层就可以了。首先来做一些数据import torchimport matplotlib.pyplot as plttorch.manual_seed(1) # reproducibleN_SAMPLES = 20 #定义20个数据点N_HIDDEN = 300# training datax = torch.unsqueeze(torch.linspa转载 2020-07-21 17:27:43 · 996 阅读 · 0 评论 -
pytorch gpu加速
先回到之前用的CNN网络进行手写数字识别的实验:import torchimport torch.nn as nnfrom torch.autograd import Variableimport torch.utils.data as Dataimport torchvision #包括了一些数据库,图片的数据库也包含了import matplotlib.pyplot as plt#定义超参数EPOCH = 1BATCH_SIZE = 50LR= 0.001DOWNLOAD_MN原创 2020-07-19 11:40:21 · 810 阅读 · 0 评论 -
pytorch实现DQN
DQN(Deep Q Network)DQN可以使计算机玩游戏比人类厉害,Q-learning和Deep-learning的融合当游戏的状态和动作多种多样,多到天文数字的时候,如果用表格来存储的话,显然不切实际,如果用到神经网络就是给出一个状态和动作,通过神经网络,得到这个状态和动作下的value;也可以经过一个状态,通过神经网络,得到不止一个对应的values + op —> value1s —> value1,value2,value3…DQN在原来的Q网络的基础上转载 2020-07-15 22:42:48 · 6674 阅读 · 5 评论 -
pytorch实现自编码
自编码网络是非监督学习领域的一种,可以自动从无标注的数据中学习特征,是一种以重构输入信息为目标的神经网络,它可以给出比原始数据更好的特征描述,具有较强的特征学习能力,在深度学习中常用自编码网络生成的特征来取代原始数据,已取得更好效果。换句话说,自编码网络的作用相当于PCA并且能获得比PCA更好的效果这里我们把手写数据集里面的图片特征先压缩,根据压缩出来的特征,对数据进行分类,即无监督学习(无监督学习:不需要标签,只需要用到train_x,不需要用到train_y)import torch.nn as原创 2020-07-14 21:59:53 · 1125 阅读 · 0 评论 -
pytorch实现RNN
RNN实现分类问题import torchimport torch.nn as nnfrom torch.autograd import Variableimport torchvision.datasets as dsets #包括了一些数据库,图片的数据库也包含了import torchvision.transforms as transformsimport matplotlib.pyplot as plt#超参数EPOCH = 1BATCH_SIZE = 64TIME_STEP原创 2020-07-07 22:08:49 · 2887 阅读 · 6 评论 -
pytorch实现CNN网络
import torchimport torch.nn as nnfrom torch.autograd import Variableimport torch.utils.data as Dataimport torchvision #包括了一些数据库,图片的数据库也包含了import matplotlib.pyplot as plt#定义超参数EPOCH = 1BATCH_SIZE = 50LR= 0.001DOWNLOAD_MNIST = Truetrain_data =原创 2020-07-06 17:21:24 · 5288 阅读 · 1 评论 -
pytorch优化器
优化器optimizer加速神经网络的训练SGD方法(Stochestic Gradient Descent)(随机梯度下降)每次使用批量数据训练,虽然不能反映整体情况,但是加速了训练速度,也不会丢失很多的准确度。其他方法参考:Optimizerimport numpy as npimport torchimport torch.utils.data as Dataimport torch.nn.functional as Fimport matplotlib.pyplot as pltfr原创 2020-06-26 15:47:28 · 237 阅读 · 0 评论 -
pytorch批训练
由于数据量太大,经常会把整个数据拆成一小批一小批来训练,可以提高训练效率。Torch提供了一种整理数据的方法:DataLoader,用它来包装数据,进行批训练构建数据import numpy as npimport torchimport torch.utils.data as DataBATCH_SIZE = 5x = torch.linspace(1,10,10) #x是1-10y = torch.linspace(10,1,10) #y是10-1print(x)print(y)原创 2020-06-24 16:27:46 · 809 阅读 · 0 评论 -
pytorch保存和提取神经网络的状态
神经网络的保存和提取如果想要保存训练到当前状态的神经网络,为了第二天继续训练或者是提取,可以现将当前的状态保存下来保存可以保存整个神经网络,也可以保存参数提取,可以直接提取整个神经网络,也可以提取参数,构造一个一模一样的神经网络,直接把参数用于里面import numpy as npimport torchimport torch.nn.functional as Ffrom torch.autograd import Variableimport matplotlib.pyplot as原创 2020-06-14 11:02:46 · 398 阅读 · 0 评论 -
pytorch 快速搭建神经网络
pytorch 快速搭建神经网络之前所用的搭建神经网络的方法是:Method 1###开始定义神经网络class Net(torch.nn.Module): #从Module模块继承 #定义阶段 def __init__(self,n_feature,n_hidden,n_output): super(Net,self).__init__() #继承Net到模块 self.hidden = torch.nn.Linear(n_feature,n_hid原创 2020-06-10 16:57:34 · 224 阅读 · 0 评论 -
pytorch 回归和分类
1 pytorch和numpy的对比import torchimport numpy as npnp_data = np.arange(6).reshape((2,3))torch_data = torch.from_numpy(np_data)print( 'numpy\n',np_data, '\ntorch\n',torch_data )...原创 2020-06-09 12:16:35 · 634 阅读 · 0 评论 -
windows10 + anaconda + pytorch 配置
1 安装原创 2019-11-14 17:06:42 · 165 阅读 · 0 评论 -
爬取图片后初次筛选人脸图片
用opencv对爬取的图片进行初次筛选,过滤掉无关图片原创 2019-10-17 08:54:21 · 996 阅读 · 0 评论 -
3--tensorflow 分类器classifier
分类器classifier之前的回归问题,预测的结果是数值型的,分类器预测出的数据是标称型一个手写数字识别的分类器import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data#number 1 to 10 data#如果没有这个数据包,会自动从网上帮你下载下来mnist = inp...原创 2019-03-26 15:35:37 · 702 阅读 · 0 评论 -
4--tensorflow CNN 卷积神经网络
1.什么是卷积神经网络人工神经网络的一种结构,最常见应用于图片识别,已可以用于其他方面。卷积也就是说神经网络不再是对每个像素的输入信息做处理了,而是图片上每一小块像素区域进行处理, 这种做法加强了图片信息的连续性.在每一次卷积的时候, 神经层可能会无意地丢失一些信息. 这时, 池化 (pooling) 就可以很好地解决这一问题. 而且池化是一个筛选过滤的过程, 能将 layer 中有用的信息...原创 2019-03-27 20:07:24 · 220 阅读 · 0 评论 -
《深度学习 第二章 神经网络的数学基础》
神经网络的数学基础原创 2019-04-09 21:53:32 · 930 阅读 · 0 评论 -
《深度学习 第三章 神经网络入门》
1.关于神经网络构建一个神经网络,首先要构造他的模型,有几层,每层有多少个神经元;然后要配置学习过程,也就是编译的这个过程,这个过程需要选择合适的optimizer(优化器),loss(损失函数),metrics(监控指标);最后是学习过程fit,这一步要指定循环多少个轮次epochs,每次处理多少个数据batch_size:##两种构建模型的方式#Sequential()类from ke...原创 2019-05-09 14:58:39 · 1391 阅读 · 0 评论 -
《深度学习 第四章 机器学习基础》
1.机器学习分类1.监督学习2.无监督学习3.自监督学习4.强化学习2.评估机器学习1.留出验证集2.k折验证3.打乱顺序的看折验证3.数据预处理,特征工程,特征学习1.神经网络的数据预处理1.向量化2.标准化3.缺失值处理2.特征工程4.过拟合,欠拟合降低过拟合的方法:1.做正则化(regularization)2.减小网络大小正则化1.权重正则化强制让模型...原创 2019-05-09 16:33:18 · 182 阅读 · 0 评论 -
《深度学习 第五章 深度学习用于计算机视觉1》
加粗样式原创 2019-05-15 11:12:30 · 710 阅读 · 0 评论 -
《深度学习 第五章 深度学习用于计算机视觉2》
5.使用预训练的卷积训练神经网络想要将深度学习应用于小型数据集上,一种非常有效的方法是使用预训练的网络预训练网络是指之前在大型数据集上训练好的网络,比如在ImageNet上训练了一个网络(其类别主要是动物和日用品),然后将这个网络应用于其他识别的图片(比如家具上)。这种学到的特征在不同问题之间具有可移植性,是深度学习的重要优势,它是的深度学习对小数据问题也很有效使用预训练的网络有两种方法:特...原创 2019-05-16 10:32:17 · 256 阅读 · 0 评论 -
《深度学习 第五章 深度学习用于计算机视觉3》
卷积神经网络可视化深度学习模型很多很难可视化,但卷积神经网络学到的表示非常适合可视化1.可视化中间激活可视化中间激活,指对于给定输入,展示网络中各个卷积层,池化层的输出特征图,(输出通常被称为该层的激活,即激活函数的输出)首先加载之前的‘cats_and_dogs_smal_2.h5’模型from keras.models import load_modelmodel = load_m...原创 2019-05-16 20:30:55 · 843 阅读 · 1 评论 -
win10 + anaconda + python3.6 + mask_rcnn 的坑
已安装anaconda,建立了tensorflow环境,并且可以运行,跑过手写数字识别程序,是可用的现在我们下载原创 2019-06-28 11:04:48 · 656 阅读 · 0 评论 -
windows10 + Anaconda + python3.6 + yolov3测试demo程序
已经安装好tensorflow-gpu 1.10.0版本,cudnn7.1.4,cuda8.0,keras2.0.8版本下载yolo工程:https://github.com/CAUlearner/YOLOv3下载yolo权重:https://pjreddie.com/media/files/yolov3.weights(权重放到工程项目文件里面)在prompt里面进行权重文件转换:...原创 2019-07-26 17:24:16 · 3568 阅读 · 0 评论 -
1--tensoflow基本使用
一个小例子通过y = 0.1x + 0.3产生一系列x,y,作为训练数据,用这组数据,预测产生的直线是什么,当然最后能越接近y = 0.1x + 0.3 这个函数是最好的import tensorflow as tfimport numpy as np#creat datax_data = np.random.rand(100).astype(np.float32)#生成100个随机...原创 2019-03-21 16:48:08 · 320 阅读 · 0 评论