1.1 计算机中需要解决的数值问题–正负数,整数小数,加减法
所有数据最后在计算机中的表示都是0,1的序列。为了实现符号的表示,计算机采用最高位的0,1来表示;为了实现小数的表示,采用浮点数和定点数,对于浮点数,设立了IEEE754规则,实现了浮点数的二进制表示,再利用规格化,实现了一种规范化的表示方法。为了避免减法的出现,更好地利用加法器,设立了反码和补码,通过加法来实现加法的需求。
1.2 进制
- 十进制转换成别的进制,小数整数要分开处理,转换成二进制,乘2取高位
|
|
|
1.3 编码制度:可分为加权与非加权
- C(12) 表示正,D(13)表示负
- 符号位占半个字节,一个字节两个十位数
1.4 机器数与真值
- 机器数:n+1位(将符号代码化)(最高位符号)
- 真值:机器数的真实值
|
|
1.5 浮点数表示
(1)非规格化表示:以2为底的科学计数法*1.**
数符+尾数(作为系数的小数项),阶符+阶码(其中的127是最高位Es产生的)
(2)规格化表达:原码的系数必须0.5≤|M|≤1;对于补码,必须Ms与M1不同
1.5 总结(原码,反码,补码,移码)
- 我们已经可以很容易的得到加法器,那么能不能通过加法器来完成减法呢?
- 假设A为正,B也为正
- 那么A-B=A+(-B)
- 如果使用原码计算,那么1±2=0001+1010=1011=-3显然是错的,那么我们发现B+B反+1=-0
- 所以A-B=A+B反+1
- 把B反+1定义为B补
- 使用补码和反码的目的是为了通过加法器实现减法的功能
1.6 机器零:最大的负数和最小正数之间的数值(除0外)
1.7 溢出:大于最大数,小于最小数
1.7 奇偶校验码:
(1)编码:全部位子异或,偶数个1则P偶=1
(2)译码:所有位子再加上P偶/P奇,如果所有位子+P偶的亦或为1则,E偶=1;如果所有位子+P奇为0,则E奇为1;E=1出错