numpy的常用运算

数组与数的计算

  • ndarray和数的操作,实际是对数组中每个元素都和该数进行操作
  • 这种行为又叫做element-wise运算。
  • 这种操作比python原生结果要快的多
import numpy as np
ar1 = np.arange(20).reshape(4, 5)
ar1
---------------------------------------------------------------------
结果:
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19]])
       
ar1 + 2
---------------------------------------------------------------------
结果:
array([[ 2,  3,  4,  5,  6],
       [ 7,  8,  9, 10, 11],
       [12, 13, 14, 15, 16],
       [17, 18, 19, 20, 21]])
       
ar1 * 2
---------------------------------------------------------------------
结果:
array([[ 0,  2,  4,  6,  8],
       [10, 12, 14, 16, 18],
       [20, 22, 24, 26, 28],
       [30, 32, 34, 36, 38]])
       
list1 = [1, 2, 3]
list1 * 2
---------------------------------------------------------------------
结果:[1, 2, 3, 1, 2, 3]
  1. 数组的广播机制
  • 如果两个数组维数不相等,维数较低的数组的shape会从左开始填充1,直到和高维数组的维数匹配

  • 如果两个数组维数相同,但某些维度的长度不同,那么长度为1的维度会被扩展,和另一数组的同维度的长度匹配

  • 如果两个数组维数相同,但有任一维度的长度不同且不为1,则报错

a = np.arange(3)
b = np.ones((2, 3))
display(a.shape, b.shape, a, b)
 ------------------------------------------------------------------------------------------
结果:
(3,)
(2, 3)
array([0, 1, 2])
array([[1., 1., 1.],
       [1., 1., 1.]])
  • 根据原则1,a从左填1,shape变为(1, 3)
  • 根据原则2,a的shape的1变为b的同维值2,则变为(2, 3)
  • 这样,2个数组形状一致了
a + b
array([[1., 2., 3.],
       [1., 2., 3.]])
a = np.arange(3).reshape((3, 1))
b = np.arange(3)
display(a.shape, b.shape, a, b)
---------------------------------------------------------------------
结果:
(3, 1)
(3,)
array([[0],
       [1],
       [2]])
array([0, 1, 2])
  • 根据原则1,b的形状变为(1, 3)
  • 根据原则2,b的形状变为(3, 3)
  • 根据原则2,a的形状变为(3, 3)
A:           B: 
[[0 0 0]        [ [0, 1, 2]
 [1 1 1]         [0, 1, 2]
 [2 2 2]         [0, 1, 2]
]             ]
a + b
array([[0, 1, 2],
       [1, 2, 3],
       [2, 3, 4]])
b = np.ones((3, 2))
a = np.arange(3)
display(a.shape, b.shape, a, b)
 --------------------------------------------------------------------
结果:
(3,)
(3, 2)
array([0, 1, 2])
array([[1., 1.],
       [1., 1.],
       [1., 1.]])
       
a + b
 --------------------------------------------------------------------
结果:ValueError  Traceback (most recent call last)
<ipython-input-19-bd58363a63fc> in <module>
----> 1 a + b

ValueError: operands could not be broadcast together with shapes (3,) (3,2) 
  1. 矩阵运算
A = np.arange(4).reshape(2, 2)
A
   --------------------------------------------------------------------------------
结果:
array([[0, 1],
       [2, 3]])
       
B = np.full((2, 2), fill_value=10)
B
 --------------------------------------------------------------------
结果:
array([[10, 10],
       [10, 10]])
       
A + B
 --------------------------------------------------------------------
结果:
array([[10, 11],
       [12, 13]])
       
A * B
 --------------------------------------------------------------------
结果:
array([[ 0, 10],
       [20, 30]])
       
A.dot(B)
 --------------------------------------------------------------------
结果:
array([[10, 10],
       [50, 50]])

矩阵的逆

np.linalg.inv(A)
 --------------------------------------------------------------------
结果:
array([[-1.5,  0.5],
       [ 1. ,  0. ]])
  1. 案例
    学生的平时成绩和期末成绩
a = np.array([[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]])

# 各占比例
b = np.array([[0.3], [0.7]])
display(a, b)
array([[80, 86],
       [82, 80],
       [85, 78],
       [90, 90],
       [86, 82],
       [82, 90],
       [78, 80],
       [92, 94]])
array([[0.3],
       [0.7]])
a.dot(b)
 --------------------------------------------------------------------
结果:
array([[84.2],
       [80.6],
       [80.1],
       [90. ],
       [83.2],
       [87.6],
       [79.4],
       [93.4]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值