print(type(X))
A = X.numpy()
print(type(A))
B = torch.tensor(A)
print(type(B))
print(id(X))
print(id(A))
print(id(B))
#输出结果
<class 'torch.Tensor'>
<class 'numpy.ndarray'>
<class 'torch.Tensor'>
2256463463360
2256464269744
2256464300544
可以发现,转换后的id值不同。即转换后的结果不共享内存。
二、将大小为1的张量转换为Python标量
可以调用 item 函数或 python 的内置函数
# 使用tensor给定元素的值
a = torch.tensor([3.5])
<br># a.iem()直接以3.5形式输出
a, a.item(), float(a), int(a)
#输出结果
(tensor([3.5000]), 3.5, 3.5, 3)