05数据操作-转换为Numpy张量

print(type(X))
 
A = X.numpy()
print(type(A))
 
B = torch.tensor(A)
print(type(B))
 
print(id(X))
print(id(A))
print(id(B))
 
#输出结果
 
<class 'torch.Tensor'>
<class 'numpy.ndarray'>
<class 'torch.Tensor'>
2256463463360
2256464269744
2256464300544

可以发现,转换后的id值不同。即转换后的结果不共享内存。

二、将大小为1的张量转换为Python标量

可以调用 item 函数或 python 的内置函数

# 使用tensor给定元素的值
 
a = torch.tensor([3.5])
<br># a.iem()直接以3.5形式输出
a, a.item(), float(a), int(a)
 
#输出结果
 
(tensor([3.5000]), 3.5, 3.5, 3)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值