15省Ca1-方程整数解
题目link.
方程: a^2 + b^2 + c^2 = 1000
a^2 + b^2 + c^2 = 1000a
2
+b
2
+c
2
=1000
这个方程有正整数解吗?有:a,b,c=6,8,30 就是一组解。
你能算出另一组合适的解吗?
注意是另一组解
#include <bits/stdc++.h>
using namespace std;
int main()
{ int i,j,k;
for(i=0;i<34;i++){
for(j=i;j<34;j++){
if(i*i+j*j>1000) break;
for(k=j;k<34;k++){
int sum=i*i+j*j+k*k;
if(sum>1000) break;
if(sum==1000) printf("%d %d %d\n",i,j,k);
}
}
}
return 0;
}
算出来的
#include <bits/stdc++.h>
using namespace std;
int main(){
int i,sum=0;//1018
for(i=1;i<2020;i++){//1和1018是互质数
if(i%2==0||i%509==0) continue;
else {sum++;
printf("%d\n",i);}
}
printf("中暑%d\n",sum);//1008
return 0;
}
int a[] = { 0, 7, 4, 0, 0, 0, 0, 4, 0, 7, 0, 0, 0, 0, 0 };
答案要求是14位数,且前两位和第7,9位均已有值。
从第三位开始,判断该位是否为0,如果为0则说明该位还没有值,则选择1~9以内除了4,7的其它数进行赋值,要注意的是不只是第三位,3+index+1位也要赋值,这是题目所要求的。就这样到下一位,进行同样的操作,在对某位置赋值的时候,如果出现(该位置+要插入的数字+1)大于14等情况,则进行回退,这是典型的回溯法。
#include <stdio.h>
int a[] = { 0, 7, 4, 0, 0, 0, 0, 4, 0, 7, 0, 0, 0, 0, 0 };
void getResult(int index) {
if (index == 4) {//跳过数字4
index++;
}
if (index >= 7) {//此时说明1-7数字都被取完,输出答案即可
for (int i = 1; i < 15; i++) {
printf("%d",a[i]);
}
}
//i--->位数
for (int i = 3; i < 14; i++) {
if ((i + index + 1) <= 14 && a[i] == 0 && a[i + index + 1] == 0) {
a[i] = a[i + index + 1] = index;
getResult(index + 1);
//执行到这一步说明此时的数字index不适合于位置i,撤回赋值
a[i] = a[i + index + 1] = 0;
}
}
}
int main () {
getResult(1);//从数字1开始
return 0;
}
15省Ca7-手链样式,全排列去重
link.
if((*it).find(str, 0) != string::npos)是什么意思
【思路】
【识记】vector v; 用于存储结果,string str=“aaabbbbccccc”; 将str加入到什么地方便于后面去重,vector ::iterator i;用于遍历string
这个题是全排列加特殊去重
#include<bits/stdc++.h>
using namespace std;
vector <string> v;
int sum=0;
int main(){
string S="aaabbbbccccc";
vector<string> v1;
do{
//vector中有该S,则跳过这个S
//排出重复,如果队列中存在旋转,翻转则跳过
int i;
for(i=0;i<v1.size();i++){
if(v1[i].find(S)!=string :: npos){break;}
}
//s不可用的情况,也就是前面的循环提前退出了
if(i!=v1.size()) continue;
string S2=S+S;
v1.push_back(S2);//将S旋转放入vector中
reverse(S2.begin(),S2.end());//翻转
v1.push_back(S2);//将S翻转放入vector中
sum++;
}while( next_permutation(S.begin(),S.end()));
cout<<sum;
return 0;}
#include<bits/stdc++.h>
using namespace std;
int sum=0;
int main(){
string str="aaabbbbccccc";
do{
vector <string>::iterator i;
for(i=v.begin();i!=v.end();i++){
if((*i).find(str,0)!=string :: npos) {
break;
}
}
if(i!=v.end()) continue;
string str2=str+str;
v.push_back(str2);
reverse(str2.begin(),str2.end());
v.push_back(str2);
sum++;
}while( next_permutation(str.begin(),str.end()));
cout<<sum;
return 0;}
把所给正方形看作154*154的格点正方形,在每个格点依次尝试填入所给的数字(dfs),如上图转换成格点正方形后:[0,0]到[59,59]的格点填入数字60,[60,0]到[109,49]的格点填入数字50…
【重点】dfs
#include<bits/stdc++.h>
using namespace std;
int a[19]={2,5,9,11,16,17,19,21,22,24,26,30,31,33,35,36,41,50,52};
int mp[154][154];
int book[100];
void fill(int x,int y,int n,int num)//填数操作,在相应的格子区间里填入num
{
for(int i=x;i<x+n;i++)
{
for(int j=y;j<y+n;j++)
{
mp[i][j]=num;
}
}
}
int solve()//是否已经填完
{
for(int i=0;i<154;i++)
{
for(int j=0;j<154;j++)
{
if(mp[i][j]==0) return 0;
}
}
return 1;
}
int judge(int x,int y,int n)//判断当前数字能不能填进去
{
if(x+n>154||y+n>154) return 0;
for(int i=x;i<x+n;i++)
{
for(int j=y;j<y+n;j++)
{
if(mp[i][j]) return 0;
}
}
return 1;
}
int dfs(int x,int y)
{
if(solve()) return 1;
else
{
int flag=0;
for(int i=0;i<154;i++)//找到能填数字的位置
{
for(int j=0;j<154;j++)
{
if(mp[i][j]==0)
{
x=i;
y=j;
flag=1;
break;
}
}
if(flag) break;
}
for(int i=0;i<19;i++)
{
if(judge(x,y,a[i]))
{
if(book[i]==0)
{
fill(x,y,a[i],a[i]);
book[i]=1;
if(dfs(x,y+a[i])) return 1;//在(x,y)填好的基础上继续填下一个数字
fill(x,y,a[i],0);//取消标记,将填的数字清零
book[i]=0;//取消标记
}
}
else break;
}
}
return 0;
}
int main()
{
memset(mp,0,sizeof(mp));
memset(book,0,sizeof(book));
fill(0,0,47,47);//初始填入的数字
fill(0,47,46,46);
fill(0,93,61,61);
dfs(0,0);
int ans=0;
for(int i=0;i<154;i++)//找最后一行不同的数字即是答案
{
if(mp[153][i]!=ans)
{
printf("%d ",mp[153][i]);
ans=mp[153][i];
}
}
return 0;
}