牛客 OI 赛前集训营-提高组(第一场)C - 与巨——二进制、结论

进不去的题面

题目描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

题解

首先可以发现, G ( i ) G(i) G(i) 的二进制最高位以前全是1,而且最高位和 i i i 相同,所以 [ ( i ∗ c ) & G ( i ) = i ] [(i*c)\&G(i)=i] [(ic)&G(i)=i] 相当于 i i i 乘以 c c c 过后,原来的数位上不变。

考虑什么情况下原来的数位不会变。如果 c c c 是偶数,那么 i ∗ c i*c ic i i i 的最低位必定不相同,所以答案为0。如果 c c c 是1,那么显然每个数都符合要求。

如果 c c c 是不为1的奇数?考虑 c c c 的二进制表示的最后两个1:一个是1,一个是 g = l o w b i t ( c − 1 ) g=\rm lowbit(c-1) g=lowbit(c1)

...001000001  c
       10111  i
     1011010  i
    10101100  i
	...

i < g i<g i<g 那么显然可以;
i i i 的最高位和 g g g 相同,此时 i i i 的最后一位必须为0,否则在最高位以前必定和原数不同;
i i i 的最高位比 g g g 大一位,此时 i i i 的最后两位必须为0,否则在最高位以前必定和原数不同;
以此类推。

于是可以得到结论:假设 g = 2 w g=2^w g=2w,那么符合条件的 i i i 必须满足二进制只有最高的 w w w以内存在1,其它位上必须全为0。由于 d p c , i dp_{c,i} dpc,i 是求前缀最大值,所以 d p c , i dp_{c,i} dpc,i 就等于 i i i 保留最高的 w w w 位的结果。

知道了结论过后,我们只需要设计一下怎么在 O ( ∣ n ∣ ) O(|n|) O(n) 复杂度以内统计答案即可。

c c c 为偶数直接输出0, c c c 为1则直接用公式计算 0 ∼ n 0\sim n 0n 的等差数列求和即可。

对于其它情况,我们可以枚举数的最高位 i i i,如果位数 i < ∣ n ∣ i<|n| i<n,那么前 w w w 位的每一种值都要被计算 2 i − w 2^{i-w} 2iw 次,所以只需要用等差数列求和计算一下前 w w w 位的值的和。

如果位数 i = ∣ n ∣ i=|n| i=n,那么在前 w w w 位没取到最大时,仍然每一种都会被计算 2 ∣ n ∣ − w 2^{|n|-w} 2nw 次,而前 w w w 位的最大值会被计算 ( n m o d    2 ∣ n ∣ − w ) + 1 (n\mod 2^{|n|-w})+1 (nmod2nw)+1 n n n 的后 ∣ n ∣ − w |n|-w nw 位的值+1)次,再次用等差数列求和计算即可。

代码

#include<cstdio>//JZM yyds!!
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define ll long long
#define uns unsigned
#define MOD 998244353ll
#define MAXN 10000005
#define INF 1e18
#define lowbit(x) ((x)&(-(x)))
#define IF it->first
#define IS it->second
using namespace std;
inline ll read(){
	ll x=0;bool f=1;char s=getchar();
	while((s<'0'||s>'9')&&s>0)f^=(s=='-'),s=getchar();
	while(s>='0'&&s<='9')x=(x<<1)+(x<<3)+(s^48),s=getchar();
	return f?x:-x;
}
inline ll ksm(ll a,ll b,ll mo){
	ll res=1;
	for(;b;b>>=1,a=a*a%mo)if(b&1)res=res*a%mo;
	return res;
}
const ll iv2=((MOD+1)>>1);
char s[MAXN];
int n;
ll c,mi[MAXN];
inline int AD(int a,int b){
	a+=b;return a>=MOD?a-MOD:a;
}
inline void init(int n){
	mi[0]=1;
	for(int i=1;i<=n;i++)mi[i]=AD(mi[i-1],mi[i-1]);
}
signed main()
{
	init(10000000);
	for(int T=read();T--;){
		scanf("%s",s+1),n=strlen(s+1);
		c=read();
		if(~c&1){
			printf("0\n");
			continue;
		}
		if(c==1){
			ll f=0;
			for(int i=1;i<=n;i++)f=((f<<1)+(s[i]^48))%MOD;
			printf("%lld\n",f*(f+1)%MOD*iv2%MOD);
			continue;
		}
		ll ans=0;
		ll g=lowbit(c^1);
		int w=0;
		while((1ll<<w)<g)w++;
		for(int i=n,j=0;i>1;i--,j++){
			int e=min(w-1,j);
			ll p=1ll<<e,sum=(p*3-1)%MOD*(p%MOD)%MOD*iv2%MOD;
			ans=AD(ans,sum*mi[j-e]%MOD*mi[j-e]%MOD);
		}
		int e=min(w-1,n-1);
		ll f=0,sl=0;
		for(int i=2;i<=e+1;i++)f=((f<<1)+(s[i]^48))%MOD;
		ll sum=((1ll<<(e+1))%MOD+f+MOD-1)%MOD*f%MOD*iv2%MOD;
		ans=AD(ans,sum*ksm(2,(n-e-1)<<1,MOD)%MOD);
		f=AD(f,(1ll<<e)%MOD)*ksm(2,n-e-1,MOD)%MOD;
		for(int i=e+2;i<=n;i++)sl=((sl<<1)+(s[i]^48))%MOD;
		ans=AD(ans,f*(sl+1)%MOD);
		printf("%lld\n",ans);
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值