[CF1603D] Artistic Partition——欧拉函数,线段树优化DP

[CF1603D] Artistic Partition

题解

问题其实就是要你把 1 ∼ n 1\sim n 1n 分成 k k k 段,最小化每一段的 c c c 值的和。

首先我们会想到,如果区间 [ l , r ] [l,r] [l,r] 中不存在两个有倍数关系的数,即 r < 2 l r<2l r<2l,那么 c ( l , r ) c(l,r) c(l,r) 就会取最小值 r − l + 1 r-l+1 rl+1

也就是说,如果我们按 [ 1 , 1 ] , [ 2 , 3 ] , [ 4 , 7 ] , [ 8 , 15 ] . . . [1,1],[2,3],[4,7],[8,15]... [1,1],[2,3],[4,7],[8,15]... 这样的方式去分段,那么只需分 log ⁡ n \log n logn 段即可把答案取到最小值 n n n,而且答案关于段数单调不增。

所以我们只需要考虑 k < log ⁡ n k<\log n k<logn 时的答案,这就已经大大减少了状态数,我们可以预处理出所有答案然后 O ( 1 ) O(1) O(1) 查询。

考虑设DP状态 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示把 1 ∼ i 1\sim i 1i 分成 j j j 段时的最小答案,转移需要枚举分的最后一段是多少,复杂度不可通过。

考虑加速这个过程,观察式子:
c ( l , r ) = ∑ j = l r ∑ d ≥ l , d ∣ j ∑ i = 1 j d [ gcd ⁡ ( i , j d ) = 1 ] = ∑ j = l r ∑ d ≥ l , d ∣ j φ ( j d ) c(l,r)=\sum_{j=l}^r\sum_{d\ge l,d|j}\sum_{i=1}^{\frac{j}{d}}[\gcd(i,\frac{j}{d})=1]=\sum_{j=l}^r\sum_{d\ge l,d|j}\varphi(\frac{j}{d}) c(l,r)=j=lrdl,dji=1dj[gcd(i,dj)=1]=j=lrdl,djφ(dj)
我们可以想到用线段树维护最小的DP值,每次枚举 i i i 的因子然后用预处理出的欧拉函数做一个前缀加操作,查询就直接查前缀最小值即可。

这个做法的复杂度是 O ( n log ⁡ 3 n ) O(n\log^3n) O(nlog3n) 的,比正解多一个 l o g log log,但是zkw线段树随便过。

代码

#include<bits/stdc++.h>//JZM yyds!!
#define ll long long
#define uns unsigned
#define IF (it->first)
#define IS (it->second)
#define END putchar('\n')
using namespace std;
const int MAXN=100002;
const ll INF=1e18;
inline ll read(){
	ll x=0;bool f=1;char s=getchar();
	while((s<'0'||s>'9')&&s>0){if(s=='-')f^=1;s=getchar();}
	while(s>='0'&&s<='9')x=(x<<1)+(x<<3)+(s^48),s=getchar();
	return f?x:-x;
}
int ptf[50],lpt;
inline void print(ll x,char c='\n'){
	if(x<0)putchar('-'),x=-x;
	ptf[lpt=1]=x%10;
	while(x>9)x/=10,ptf[++lpt]=x%10;
	while(lpt)putchar(ptf[lpt--]^48);
	if(c>0)putchar(c);
}
inline ll lowbit(ll x){return x&-x;}

bool nop[MAXN];
int pr[MAXN],le,phi[MAXN];
inline void init(int n){
	nop[0]=nop[1]=1,phi[1]=1,le=0;
	for(int a=2;a<=n;a++){
		if(!nop[a])pr[++le]=a,phi[a]=a-1;
		for(int i=1,u;i<=le&&(u=pr[i]*a)<=n;i++){
			nop[u]=1;
			if(a%pr[i]==0)phi[u]=phi[a]*pr[i],i=le;
			else phi[u]=phi[a]*(pr[i]-1);
		}
	}
}
int n,k;
const int m=17;
ll dp[MAXN][18];
struct zkw{
	ll f[MAXN*3],lz[MAXN*3];int p;
	inline void init(int n){
		for(p=1;p<n+2;p<<=1);
		for(int i=p+n+2;i>0;i--)f[i]=INF;
	}
	inline void cg(int x,ll d){
		for(f[p+x]=d,x=(p+x)>>1;x;x>>=1)
			f[x]=min(f[x<<1],f[x<<1|1])+lz[x];
	}
	inline void add(int r,ll d){
		for(r=p+r+1;r>1;){
			if(r&1)f[r^1]+=d,lz[r^1]+=d;
			r>>=1,f[r]=min(f[r<<1],f[r<<1|1])+lz[r];
		}
	}
}T[17];
vector<int>Z[MAXN];
signed main()
{
	n=1e5,init(n);
	memset(dp,0x7f,sizeof(dp));
	for(int i=0;i<m;i++)T[i].init(n);
	dp[0][0]=0;
	for(int i=0;i<m;i++)T[i].cg(1,dp[0][i]);
	for(int i=1;i<=n;i++)
		for(int j=i;j<=n;j+=i)Z[j].push_back(i);
	for(int i=1;i<=n;i++){
		for(int j=0;(1<<j)<=i;j++)
			for(int z:Z[i])T[j].add(z,phi[i/z]);
		for(int j=1;(1<<j)<=i;j++)dp[i][j]=T[j-1].f[1];
		for(int j=0;(1<<j)<=i+1;j++)T[j].cg(i+1,dp[i][j]);
	}
	for(int mudamudamudamudamuda=read();mudamudamudamudamuda--;){
		n=read(),k=read();
		if(k>m||(1<<k)>n)print(n);
		else print(dp[n][k]);
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值