题意
大家都是优秀生,这点英文还是看得懂的:点此看题
题解
由于旅行路线成一个环,所以从哪里出发不重要,我们把景点按照 a i a_i ai 排序,不妨就从左边最小的出发。基础的旅行费用 c i c_i ci 是都要算上的,我们的目的是最小化额外的费用 ∑ max ( 0 , ( a j − a i ) − c j ) \sum\max(0,(a_j-a_i)-c_j) ∑max(0,(aj−ai)−cj) 。
很明显有一部分的景点是回程(从大到小飞回起点)的时候经过的,这些景点一定没有额外费用。其它景点是来路经过的,费用取决于相邻两个的“间距”( a a a 的差)。最左端和最右端都在来路上。
我们不妨用
d
p
[
i
]
dp[i]
dp[i] 表示来路上经过
i
i
i 时,最小的额外花费是多少。那么假设从
i
i
i 往左数,直到
k
k
k 以内的前驱,到
i
i
i 的额外花费都是 0(这个 k 可以预处理出来),则转移为:
d
p
[
i
]
=
min
{
min
j
=
k
i
−
1
d
p
[
j
]
,
a
i
+
(
min
j
=
1
k
−
1
(
d
p
[
j
]
−
a
j
)
)
−
c
i
}
dp[i]=\min\bigg\{\min_{j=k}^{i-1} dp[j]~,~a_i+\big(\min_{j=1}^{k-1} (dp[j]-a_j)\big)-c_i\bigg\}
dp[i]=min{j=kmini−1dp[j] , ai+(j=1mink−1(dp[j]−aj))−ci}
可以分别建立两棵线段树来优化 D P \rm DP DP 。时间复杂度 Θ ( n log n ) \Theta(n\log n) Θ(nlogn) 。
CODE
和上面说的不同,这个是从右到左算的。
#include<set>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 200005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x) & (x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
int n,m,i,j,s,o,k;
struct it{
int a,c,id;
}p[MAXN];
LL dp[MAXN];
bool cmp(it x,it y) {
if(x.a != y.a) return x.a < y.a;
if(x.id == 1) return 1;
if(y.id == 1) return 0;
return x.c < y.c;
}
int tre1[MAXN<<2],tre2[MAXN<<2],M;
int bing1(int x,int y) {
if(!x || !y) return x+y;
if(dp[x] != dp[y]) return dp[x] < dp[y] ? x:y;
return max(x,y);
}
int bing2(int x,int y) {
if(!x || !y) return x+y;
if(dp[x]+p[x].a != dp[y]+p[y].a) return dp[x]+p[x].a < dp[y]+p[y].a ? x:y;
return max(x,y);
}
void maketree(int n) {M=1;while(M<n+2)M<<=1;}
void addtree(int x,int y) {
int s = M+x;tre1[s] = tre2[s] = y;s >>= 1;
while(s) tre1[s] = bing1(tre1[s<<1],tre1[s<<1|1]),tre2[s] = bing2(tre2[s<<1],tre2[s<<1|1]),s >>= 1;
}
int findtree1(int l,int r) {
int as = 0; if(l > r) return as;
int s = M+l-1,t = M+r+1;
while(s || t) {
if((s>>1) ^ (t>>1)) {
if(!(s & 1)) as = bing1(as,tre1[s^1]);
if(t & 1) as = bing1(as,tre1[t^1]);
}else break;
s >>= 1;t >>= 1;
}return as;
}
int findtree2(int l,int r) {
int as = 0; if(l > r) return as;
int s = M+l-1,t = M+r+1;
while(s || t) {
if((s>>1) ^ (t>>1)) {
if(!(s & 1)) as = bing2(as,tre2[s^1]);
if(t & 1) as = bing2(as,tre2[t^1]);
}else break;
s >>= 1;t >>= 1;
}return as;
}
int rr[MAXN];
int main() {
n = read();
LL ans = 0;
for(int i = 1;i <= n;i ++) {
p[i].a = read();p[i].c = read();
ans += p[i].c;
p[i].id = i;
}
sort(p + 1,p + 1 + n,cmp);
maketree(n);
for(int i = 1;i < n;i ++) {
rr[i] = i;
for(int j = 17;j >= 0;j --) {
if(rr[i]+(1<<j) <= n && p[rr[i]+(1<<j)].a <= p[i].a+p[i].c) rr[i] += (1<<j);
}
}
dp[n] = 0;
addtree(n,n);
for(int i = n-1;i > 0;i --) {
int t1 = findtree1(i+1,rr[i]),t2 = findtree2(rr[i]+1,n);
dp[i] = 1e18;
if(t1) dp[i] = min(dp[i],dp[t1]);
if(t2) dp[i] = min(dp[i],dp[t2] + p[t2].a - (p[i].a+p[i].c));
addtree(i,i);
}
printf("%lld\n",ans + dp[1]);
return 0;
}