ARC120F Wine Thief (组合数学)

题面

有一个长为 N N N 的序列,相邻的两个数中只能选一个,总共选 k k k 个数,一种方案的价值为选的 k k k 个数的和,问所有合法方案的价值总和,答案对 998244353 取模。

1 ≤ N ≤ 3 ⋅ 1 0 5   ,   1 ≤ k ≤ ⌈ N 2 ⌉ 1\leq N\leq 3\cdot10^5~,~1\leq k\leq \left\lceil \frac{N}{2} \right\rceil 1N3105 , 1k2N.

题解

把每个数的贡献拆开求,答案就是 每个数的值 × 该数被选的方案数。这是最基本的转化。

G ( n , i , k ) G(n,i,k) G(n,i,k) 表示 n n n 个数中选 k k k 个数,必选第 i i i 个数的方案数。

我们先鲁莽地列个式子,枚举第 i i i 个数前面选了多少个数,然后就是个放球问题,不难发现 G ( n , i , k ) = ∑ j = 0 ( i − 1 ) / 2 C i − 1 − j j ⋅ C n − i − k − 1 + j k − 1 − j G(n,i,k)=\sum_{j=0}^{(i-1)/2}C_{i-1-j}^{j}\cdot C_{n-i-k-1+j}^{k-1-j} G(n,i,k)=j=0(i1)/2Ci1jjCnik1+jk1j

——毫无可做性。

我们得换个思路想。不妨容斥一下?先设 f ( n , k ) f(n,k) f(n,k) 为在 n n n 个数中选 k k k 个数的总方案数,可得 f ( n , k ) = C n − k + 1 k f(n,k)=C_{n-k+1}^{k} f(n,k)=Cnk+1k

然后这里利用了官解里所说的 “ 化环 ” 的思想。

如果把整个序列视为一个环(即第一个点和最后一个点不能同时选),那么 G ′ ( n , 1 , k ) = G ′ ( n , 2 , k ) = ⋯ = G ′ ( n , n , k ) G'(n,1,k)=G'(n,2,k)=\cdots=G'(n,n,k) G(n,1,k)=G(n,2,k)==G(n,n,k),不妨令此时的 G ′ ( n , 1 , k ) = G ′ ( n , 2 , k ) = ⋯ = G ′ ( n , n , k )   =   F ( n , k ) G'(n,1,k)=G'(n,2,k)=\cdots=G'(n,n,k)~=~F(n,k) G(n,1,k)=G(n,2,k)==G(n,n,k) = F(n,k),则通过一番组合推导,可以发现
F ( n , k ) = { n < 3 :    [ k = = 1 ]           n ≥ 3 : f ( n − 3 , k − 1 ) F(n,k)=\bigg\lbrace{\begin{matrix}n<3:~~[k==1]~~~~~~~~~\\ n\geq3:f(n-3,k-1) \end{matrix}} F(n,k)={n<3:  [k==1]         n3:f(n3,k1)

如果不是个环,那就多了一种情况:第一个点和最后一个点同时选,我们把它加上去就行了。选了第一个点和最后一个点后,相当于中间的长度为 n − 4 n-4 n4 的子区间又构成了一个子问题,因此 G ( n , i , k ) G(n,i,k) G(n,i,k) 有这样的递推公式:
G ( n , i , k ) = { i ≤ 0 : 0 i = 1 : F ( n , k ) + f ( n − 4 , k − 2 ) i > 1 : F ( n , k ) + G ( n − 4 , i − 2 , k − 2 ) i > ⌈ n 2 ⌉ : G ( n , n − i + 1 , k ) G(n,i,k)=\begin{cases} i\leq0: & 0\\ i=1: & F(n,k)+f(n-4,k-2)\\ i>1: & F(n,k)+G(n-4,i-2,k-2)\\ i>\lceil\frac{n}{2}\rceil: & G(n,n-i+1,k) \end{cases} G(n,i,k)=i0:i=1:i>1:i>2n:0F(n,k)+f(n4,k2)F(n,k)+G(n4,i2,k2)G(n,ni+1,k)

我们将一般情况( i > 1 i>1 i>1)展开,可以得到:
G ( n , i , k ) = F ( n , k ) + F ( n − 4 , k − 2 ) + F ( n − 8 , k − 4 ) + ⋯ G(n,i,k)=F(n,k)+F(n-4,k-2)+F(n-8,k-4)+\cdots G(n,i,k)=F(n,k)+F(n4,k2)+F(n8,k4)+

不难发现对于不同的 i i i ,前面部分都是一样的, i i i 只决定式子长度以及最后一项!

那么我们就可以从左到右遍历 i i i 的时候把 G ( n , i , k ) G(n,i,k) G(n,i,k) 衔接着求,只求前一半。每次到新的 i i i 最多会增加或减少一两项。由于递推式中每次 i i i 会减少 2,且 i = 1 i=1 i=1 属于特殊情况,所以要分奇偶性讨论。

具体实现有点细节,但是只求前一半,再考虑考虑边界应该就没问题了。

时间复杂度 O ( n ) O(n) O(n)

CODE

#include<cstdio>
#include<vector>
#include<cmath>
#include<queue>
#include<map>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 1000005
#define DB double
#define LL long long
#define ENDL putchar('\n')
#define lowbit(x) ((-x) & (x))
#define INF 0x3f3f3f3f
LL read() {
	LL f=1,x=0;char s = getchar();
	while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
	while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
	return f * x;
}
const int MOD = 998244353;
int n,m,i,j,s,o,k;
int a[MAXN];
int fac[MAXN],inv[MAXN],invf[MAXN];
inline int qkpow(int a,int b) {
	int res = 1;
	while(b > 0) {
		if(b & 1) res = res *1ll* a % MOD;
		a = a *1ll* a % MOD; b >>= 1;
	}return res;
}
inline int C(int n,int m) {
	if(m < 0 || m > n) return 0;
	return 1ll*fac[n] * invf[n-m] % MOD *invf[m] % MOD;
}
inline int f_(int n,int k) {return C(n-k+1,k);}
inline int F(int n,int k) {
	if(n <= 3) {
		if(k == 1) return 1;
		else return 0;
	}
	else return f_(n-3,k-1);
}
int tm[MAXN];
int main() {
	n = read();k = read();int D = read();
	int ans = 0;
	fac[0] = fac[1] = inv[0] = inv[1] = invf[1] = invf[0] = 1;
	for(int i = 2;i <= n;i ++) {
		fac[i] = fac[i-1] *1ll* i % MOD;
		inv[i] = (MOD-inv[MOD%i]) *1ll* (MOD/i) % MOD;
		invf[i] = invf[i-1] *1ll* inv[i] % MOD;
	}
	for(int i = 1;i <= n;i ++) {
		a[i] = read(); tm[i] = -1;
	}
	int ans0 = 0,ans1 = f_(n,k),ad1 = 0,ad2 = 0;
	for(int i = 1;i <= n;i ++) {
		if(i & 1) {
			(ans1 += MOD-f_(n-4*ad1,k-2*ad1)) %= MOD;
			(ans1 += F(n-4*ad1,k-2*ad1)) %= MOD;
			ad1 ++;
			(ans1 += f_(n-4*ad1,k-2*ad1)) %= MOD;
			
			if(tm[i] >= 0) ans1 = tm[i];
			else tm[i] = tm[n-i+1] = ans1;
			(ans += ans1 *1ll* a[i] % MOD) %= MOD;
		}
		else {
			(ans0 += F(n-4*ad2,k-2*ad2)) %= MOD; ad2 ++;
			
			if(tm[i] >= 0) ans0 = tm[i];
			else tm[i] = tm[n-i+1] = ans0;
			(ans += ans0 *1ll* a[i] % MOD) %= MOD;
		}
	}
	printf("%d\n",ans);
	return 0;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值