【ACG005F】Many Easy Problems(生成函数,分治NTT(划掉))(卷积)

22 篇文章 0 订阅
16 篇文章 0 订阅

题面

🔗

给定一棵树,定义 f ( i ) f(i) f(i) 表示对于每个大小为 i i i 的点集,能够包含它的最小连通块的大小之和。

你的目的是对于每个 i ∈ [ 1 , n ] i\in[1,n] i[1,n],求出 f ( i ) f(i) f(i)

你需要对所有答案取模 924844033 924844033 924844033(一个质数)。

Input

格式如下:

N N N
a 1 a_1 a1 b 1 b_1 b1
a 2 a_2 a2 b 2 b_2 b2
: : :
a N − 1 a_{N-1} aN1 b N − 1 b_{N-1} bN1

( a i , b i ) (a_i,b_i) (ai,bi) 表示树上的一条边。

Output

输出 n n n 行,第 i i i 行输出一个整数 f ( i ) f(i) f(i)

Sample 1

Input

3
1 2
2 3

Output

3
7
3

Sample 2

Input

4
1 2
1 3
1 4

Output

4
15
13
4

Sample 3

Input

7
1 2
2 3
2 4
4 5
4 6
6 7

Output

7
67
150
179
122
45
7

Constriants

对于 100 % 100 \% 100% 的数据, 2 ≤ n ≤ 2 × 1 0 5 2\le n\le 2\times 10^5 2n2×105

题解

首先,拿到一个奇怪模数先解构
924844033 = 441 × 2 21 + 1 P r i m i t i v e r o o t ( 924844033 ) = 5 924844033=441\times2^{21}+1\\ \mathrm{Primitiveroot}(924844033)=5 924844033=441×221+1Primitiveroot(924844033)=5

唔~~~

好的我们继续分析。

包含住一个子图的最小连通块大小,直接来看根本不可做,但是由于是棵树,所以该连通块其实可以通过在原树上删夷枝叶把该连通块裁剪出来。按照这个思路计算贡献,一个点集的贡献其实是总点数 n n n 减 不在连通块中的点数。再换个思路,我们可以通过枚举「不在连通块中的点」来统计各个大小点集的答案,若以某个点 x x x 为根时,某个儿子 y y y 子树大小为 s i z [ y ] siz[y] siz[y] ,那么将对点集大小为 1 , 2 , 3 , . . . 1,2,3,... 1,2,3,... 的答案依次贡献 ( n − s i z [ y ] 1 ) , ( n − s i z [ y ] 2 ) , ( n − s i z [ y ] 3 ) , . . . {n-siz[y]\choose 1},{n-siz[y]\choose 2},{n-siz[y]\choose 3},... (1nsiz[y]),(2nsiz[y]),(3nsiz[y]),... 。我们不如此时将 f [ n − s i z [ y ] ] f[n-siz[y]] f[nsiz[y]] 加 1,统计完所有点的子树后将得到所有的 f [ i ] f[i] f[i] ,那么答案数列的生成函数就是
G ( x ) = ∑ i = 1 n f [ i ] ( 1 + x ) i G(x)=\sum_{i=1}^{n} f[i](1+x)^i G(x)=i=1nf[i](1+x)i

如果我们令函数 F ( x ) = ∑ i = 1 n f [ i ] x i F(x)=\sum_{i=1}^{n}f[i]x^i F(x)=i=1nf[i]xi ,那么就要求函数 G ( x ) = F ( x + 1 ) G(x)=F(x+1) G(x)=F(x+1)

怎么做呢?安排 n n n 个横坐标对 F ( x ) F(x) F(x) 多点求值再横坐标减 1 对 G ( x ) G(x) G(x) 快速插值……时间复杂度 O ( n log ⁡ 2 n ) O(n\log^2 n) O(nlog2n) 常数🤮

其实我们可以分治来做。

若我们已经求出
F 0 = ∑ i = 1 m i d f [ i ] ( x + 1 ) i   ,   F 1 = ∑ i = m i d + 1 n f [ i ] ( 1 + x ) i − m i d F_0=\sum_{i=1}^{mid}f[i](x+1)^{i}~,~F_1=\sum_{i=mid+1}^{n} f[i](1+x)^{i-mid} F0=i=1midf[i](x+1)i , F1=i=mid+1nf[i](1+x)imid

那么可以通过一次多项式乘法,一次多项式加法求出
F = F 0 + F 1 ⋅ ( 1 + x ) m i d F=F_0+F_1\cdot(1+x)^{mid} F=F0+F1(1+x)mid

由于 F 0 , F 1 , ( 1 + x ) m i d F_0,F_1,(1+x)^{mid} F0,F1,(1+x)mid 的次数都是 n 2 \frac{n}{2} 2n 级别的,所以复杂度正确常熟优秀, O ( n log ⁡ 2 n ) O(n\log^2n) O(nlog2n)

另:不会真有人傻到预处理每个 ( 1 + x ) m i d (1+x)^{mid} (1+x)mid 存到 vector 中吧……其实 ( 1 + x ) n = ∑ i = 0 n ( n i ) x i (1+x)^n=\sum_{i=0}^{n}{n\choose i}x^i (1+x)n=i=0n(in)xi ,完全可以在多项式乘法之前当场给出来。 F 0 , F 1 F_0,F_1 F0,F1 也可以通过指针直接存在一个大数组里,因为我们时刻需要的位置最多 O ( n ) O(n) O(n)



在这里插入图片描述
好吧我是废物
∑ i = 0 n f [ i ] ( 1 + x ) i = ∑ i = 0 n f [ i ] ∑ j = 0 i ( i j ) x j = ∑ i = 0 n f [ i ] i ! ∑ j = 0 i 1 ( i − j ) ! x j 1 j ! = ∑ j = 0 n x j 1 j ! ∑ i = j n f [ i ] i ! 1 ( i − j ) ! \sum_{i=0}^nf[i](1+x)^i=\sum_{i=0}^nf[i]\sum_{j=0}^i{i\choose j}x^j=\sum_{i=0}^n f[i]i!\sum_{j=0}^i\frac{1}{(i-j)!}x^j\frac{1}{j!}\\ =\sum_{j=0}^nx^j\frac{1}{j!}\sum_{i=j}^n f[i]i!\frac{1}{(i-j)!} i=0nf[i](1+x)i=i=0nf[i]j=0i(ji)xj=i=0nf[i]i!j=0i(ij)!1xjj!1=j=0nxjj!1i=jnf[i]i!(ij)!1

直接卷积完事, O ( n log ⁡ n ) O(n\log n) O(nlogn)

在这里插入图片描述

CODE

#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<random>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 200005
#define LL long long
#define ULL unsigned long long
#define ENDL putchar('\n')
#define DB double
#define lowbit(x) (-(x) & (x))
#define FI first
#define SE second
int xchar() {
	static const int maxn = 1000000;
	static char b[maxn];
	static int pos = 0,len = 0;
	if(pos == len) pos = 0,len = fread(b,1,maxn,stdin);
	if(pos == len) return -1;
	return b[pos ++];
}
//#define getchar() xchar()
LL read() {
	LL f = 1,x = 0;int s = getchar();
	while(s < '0' || s > '9') {if(s<0)return -1;if(s=='-')f=-f;s = getchar();}
	while(s >= '0' && s <= '9') {x = (x<<1) + (x<<3) + (s^48);s = getchar();}
	return f*x;
}
void putpos(LL x) {if(!x)return ;putpos(x/10);putchar((x%10)^48);}
void putnum(LL x) {
	if(!x) {putchar('0');return ;}
	if(x<0) putchar('-'),x = -x;
	return putpos(x);
}
void AIput(LL x,int c) {putnum(x);putchar(c);}

const int MOD = 924844033;
const int RM = 5;
int n,m,s,o,k;
int qkpow(int a,int b) {
	int res = 1;
	while(b > 0) {
		if(b & 1) res = res *1ll* a % MOD;
		a = a *1ll* a % MOD; b >>= 1;
	}return res;
}
int om,xm[MAXN<<2],rev[MAXN<<2];
void NTT(int *s,int n,int op) {
	for(int i = 1;i < n;i ++) {
		rev[i] = (rev[i>>1]>>1) | ((i&1) ? (n>>1):0);
		if(rev[i] < i) swap(s[rev[i]],s[i]);
	}
	om = qkpow(RM,(MOD-1)/n); xm[0] = 1;
	if(op < 0) om = qkpow(om,MOD-2);
	for(int i = 1;i <= n;i ++) xm[i] = xm[i-1] *1ll* om % MOD;
	for(int k = 2,t = n>>1;k <= n;k <<= 1,t >>= 1) {
		for(int j = 0;j < n;j += k) {
			for(int i = j,l = 0;i < j+(k>>1);i ++,l += t) {
				int A = s[i],B = s[i+(k>>1)];
				s[i] = (A + xm[l]*1ll*B) % MOD;
				s[i+(k>>1)] = (A+MOD-xm[l]*1ll*B%MOD)%MOD;
			}
		}
	}
	if(op < 0) {
		int iv = qkpow(n,MOD-2);
		for(int i = 0;i < n;i ++) s[i] = s[i] *1ll* iv % MOD;
	}return ;
}
int fac[MAXN],inv[MAXN],invf[MAXN];
int C(int n,int m) {
	if(m < 0 || m > n) return 0;
	return fac[n] *1ll* invf[n-m] % MOD *1ll* invf[m] % MOD;
}
int hd[MAXN],nx[MAXN<<1],v[MAXN<<1],cne;
void ins(int x,int y) {
	nx[++ cne] = hd[x]; v[cne] = y; hd[x] = cne;
}
int ans[MAXN];
int siz[MAXN],ct[MAXN];
void dfs(int x,int ff) {
	siz[x] = 1;
	for(int i = hd[x];i;i = nx[i]) {
		if(v[i] != ff) {
			dfs(v[i],x);
			ct[siz[v[i]]] ++;
			siz[x] += siz[v[i]];
		}
	}
	ct[n-siz[x]] ++;
	return ;
}
vector<int> g[MAXN<<2];
int h[MAXN<<3];
int a_[MAXN<<2],b_[MAXN<<2];
void solve(int *f,int l,int r) {
	if(l == r) {
		f[0] = f[1] = ct[l];
		return ;
	}
	int md = (l + r) >> 1,l1 = md-l+1,l2 = r-md;
	solve(f,l,md); solve(f+l1+1,md+1,r);
	for(int i = 0;i <= l1;i ++) a_[i] = C(l1,i);
	for(int i = 0;i <= l2;i ++) b_[i] = f[l1+1+i];
	int le = 1; while(le <= r-l+1) le <<= 1;
	NTT(a_,le,1); NTT(b_,le,1);
	for(int i = 0;i < le;i ++) a_[i] = a_[i] *1ll* b_[i] % MOD;
	NTT(a_,le,-1);
	for(int i = 0;i < le;i ++) {
		if(i <= l1) f[i] = (f[i]+a_[i]) % MOD;
		else if(i <= r-l+1) f[i] = a_[i];
		else f[i] = 0;
		a_[i] = b_[i] = 0;
	}return ;
}
int main() {
	n = read();
	fac[0]=fac[1]=inv[0]=inv[1]=invf[0]=invf[1]=1;
	for(int i = 2;i <= n;i ++) {
		fac[i] = fac[i-1] *1ll* i % MOD;
		inv[i] = (MOD-inv[MOD%i]) *1ll* (MOD/i) % MOD;
		invf[i] = invf[i-1] *1ll* inv[i] % MOD;
	}
	for(int i = 1;i < n;i ++) {
		s = read();o = read();
		ins(s,o); ins(o,s);
	}
	dfs(1,0);
	for(int i = 1;i <= n;i ++) {
		ans[i] = C(n,i) *1ll* n % MOD;
	}
	solve(h,1,n);
	for(int i = 1;i <= n;i ++) {
		(ans[i] += MOD-h[i]) %= MOD;
		AIput(ans[i],'\n');
	}
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值