【NOI模拟赛】区间距离(分块,卷积)

题面

5s , 512mb

在这里插入图片描述
在这里插入图片描述

题解

做这道题,首先要大胆。

我们可以分块,计算 a a a 每个块与 b b b 每个后缀匹配的结果: a a a 的五种值分开考虑,设当前枚举的值是 d d d ,计算每个 ∣ b i − d ∣ |b_i-d| bid ,将 a a a 中等于 d d d 的赋为 1,否则为 0,然后将 b b b 翻转与 a a a 的每个块做卷积。

我们用 s u m [ i ] [ j ] sum[i][j] sum[i][j] 表示 a a a 从第 i i i 个块开头到 n n n b b b 的后缀 j j j 匹配的答案,询问的时候差分一下,再查散块就好了。

令值域为 D D D D = 5 D=5 D=5),块大小为 B B B,时间复杂度为 O ( D n ⋅ n B log ⁡ n + q B ) O(Dn\cdot\frac{n}{B}\log n+qB) O(DnBnlogn+qB) ,被卡了过不了!

考虑怎么把这个 D D D 去掉。

五种情况的 b b b 的多项式点值表达式可以预处理出来,每个块五种情况卷积后的点值表达式可以先不忙逆变换,全部加起来后再逆变换回去。

这时候麻烦的是每个块五种情况的初始多项式,好像怎么都得正变换一次才行。但是我们发现多项式长度只有 O ( B ) O(B) O(B) ,也就是说, B B B 之后的位置都为 0,按位翻转后,非零的位置开头的 log ⁡ B \log B logB 位才有 1,做 N T T NTT NTT 时容易轮空。我们把轮空的部分跳过,这部分复杂度理论上可以达到 O ( ( 1 + ε ) n ) O((1+ε)n) O((1+ε)n)

于是将复杂度将为 O ( n ⋅ n B log ⁡ n + q B ) O(n\cdot\frac{n}{B}\log n+qB) O(nBnlogn+qB)

CODE

只是用这个方法跳过了不少取模,减小了常数而已,还是 O ( D n ⋅ n B log ⁡ n + q B ) O(Dn\cdot\frac{n}{B}\log n+qB) O(DnBnlogn+qB) 的代码。

块长开的 1345 1345 1345

#include<map>
#include<set>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<random>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<unordered_map>
#pragma GCC optimize(2)
using namespace std;
#define MAXN 100005
#define LL long long
#define ULL unsigned long long
#define ENDL putchar('\n')
#define DB double
#define lowbit(x) (-(x) & (x))
#define FI first
#define SE second
#define SQ 1345
int xchar() {
	static const int maxn = 1000000;
	static char b[maxn];
	static int pos = 0,len = 0;
	if(pos == len) pos = 0,len = fread(b,1,maxn,stdin);
	if(pos == len) return -1;
	return b[pos ++];
}
#define getchar() xchar()
LL read() {
	LL f = 1,x = 0;int s = getchar();
	while(s < '0' || s > '9') {if(s<0)return -1;if(s=='-')f=-f;s = getchar();}
	while(s >= '0' && s <= '9') {x = (x<<1) + (x<<3) + (s^48);s = getchar();}
	return f*x;
}
void putpos(LL x) {if(!x)return ;putpos(x/10);putchar((x%10)^48);}
void putnum(LL x) {
	if(!x) {putchar('0');return ;}
	if(x<0) putchar('-'),x = -x;
	return putpos(x);
}
void AIput(LL x,int c) {putnum(x);putchar(c);}

const int MOD = 998244353;
int n,m,s,o,k;
inline int qkpow(int a,int b) {
	int res = 1;
	while(b > 0) {
		if(b & 1) res = res*1ll*a % MOD;
		a = a *1ll* a % MOD; b >>= 1;
	}return res;
}
inline int Abs(int x) {return x<0 ? -x:x;}
int a[MAXN],b[MAXN];
int bel[MAXN],bl[MAXN],br[MAXN];
int xm[MAXN<<2],om,rev[MAXN<<2];
LL v;
void initn(int n) {
	for(int i = 1;i < n;i ++) {
		rev[i] = (rev[i>>1]>>1) | ((i&1) ? (n>>1):0);
	} om = qkpow(3,(MOD-1)/n); xm[0] = 1;
	for(int i = 1;i <= n;i ++) xm[i] = xm[i-1]*1ll*om % MOD;
	v = qkpow(n,MOD-2); return ;
}
void NTT(int *s,int n,int op) {
	for(int i = 1;i < n;i ++) {
		if(rev[i] < i) swap(s[rev[i]],s[i]);
	}
	for(int k = 2,t = n>>1;k <= n;k <<= 1,t >>= 1) {
		for(int j = 0;j < n;j += k) {
			for(int i = j,l = 0;i < j+(k>>1);i ++,l += t) {
				int A = s[i],B = s[i+(k>>1)];
				if(!(A|B)) continue; //                 省掉取模关键语句!!!
				s[i] = (A + xm[op < 0 ? n-l:l]*1ll*B) % MOD;
				s[i+(k>>1)] = (A +MOD- xm[op < 0 ? n-l:l]*1ll*B % MOD) % MOD;
			}
		}
	}
	if(op < 0) {
		for(int i = 0;i < n;i ++) s[i] = s[i] * v % MOD;
	} return ;
}
int A[MAXN<<2],B[5][MAXN<<2],C[MAXN<<2];
int sm[MAXN/SQ+5][MAXN+SQ];
int que(int s,int o) {
	if(s > n || o > n) return 0;
	int B = bel[s],le = s-bl[B];
	if(o-le < 1) {
		le -= br[B]-bl[B]+1;
		B ++; int as = sm[B][o-le];
	// printf("as: %d",as);
		for(int i = s,j = o;i <= br[B-1] && j <= n;i ++,j ++) as += Abs(a[i]-b[j]);
	// printf("->%d  ",as);
		return as;
	}
	int as = sm[B][o-le];
	// printf("(%d,%d)as: %d",as,B,o-le);
	for(int i = bl[B],j = o-le;i < s && j <= n;i ++,j ++) as -= Abs(a[i]-b[j]);
	// printf("->%d  ",as);
	return as;
}
int main() {
	freopen("dist.in","r",stdin);
	freopen("dist.out","w",stdout);
	n = read();m = read();
	for(int i = 1;i <= n;i ++) {
		a[i] = read();
		int B = i/SQ+1; bel[i] = B;
		if(!bl[B]) bl[B] = i;
		br[B] = i;
	}
	for(int i = 1;i <= n;i ++) {
		b[i] = read();
	}
	int le = 1;while(le <= n+SQ) le <<= 1;
	initn(le);
	for(int d = 1;d <= 5;d ++) {
		for(int i = 0;i < le;i ++) B[d-1][i] = 0;
		for(int i = 1;i <= n;i ++) B[d-1][n-i] = Abs(d-b[i]);
		NTT(B[d-1],le,1);
	}
	for(int i = 1;i <= bel[n];i ++) {
		for(int j = 0;j < le;j ++) C[j] = 0;
		for(int d = 1;d <= 5;d ++) {
			int st = bl[i],sz = br[i]-bl[i]+1;
			for(int j = 0;j < le;j ++) A[j] = 0;
			for(int j = 0;j < sz;j ++) A[j] = (a[st+j] == d ? 1:0);
			NTT(A,le,1);
			for(int j = 0;j < le;j ++) C[j] = (C[j] + A[j] *1ll* B[d-1][j]) % MOD;
		}
		NTT(C,le,-1);
		for(int j = 1;j <= n;j ++) sm[i][j] += C[n-j];
	}
	for(int i = bel[n]-1;i > 0;i --) {
		int nm = bl[i+1] - bl[i];
		for(int j = 1;j+nm <= n;j ++) sm[i][j] += sm[i+1][j+nm];
	}
	for(int i = 1;i <= m;i ++) {
		s = read();o = read();k = read();
		int s2 = s+k,o2 = o+k;
		AIput(que(s,o) - que(s2,o2),'\n');
	}
	return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值