- 博客(12)
- 收藏
- 关注
原创 项目实训3
项目实训3demo菜单实现简单查询导出创建 POJO例如:public class Demo {private int id;private int age;private String name;public void setId(int id) {this.id = id;}public void getId() {return this.id;}// 其他三个属性同理}创建 dao 层例如:public interface DemoMapper {publ
2021-07-04 13:43:20 138
原创 项目实训2
项目实训2环境配置环境要求java 开发使用 IntelliJ IDEAvue 前端 Visual Studio Codepython JetBrains PyCharm数据库 MYSQL5.7vue环境配置1) 安装node.js从node.js官网下载并安装node,安装完之后,我们通过打开命令行工具(win+R),输入node -v 命令,查看node的版本。输入 npm -v 命令,显示npm的版本信息。2) 安装cnpm在命令行中输入 npm install -g c
2021-07-04 12:54:13 124
原创 项目实训1
项目实训1项目理解项目名称智能任务画像综合分析系统项目基本信息系统通过用户自行上传或埋点上报收集记录用户大量信息,将这些信息进行沉淀、加工和抽象,形成一个以用户标志为主key的标签树,用于全面刻画用户的属性和行为信息,构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。通过国内外指定网站数据获取,结合算法模型,综合分析用户行为画像,构建立体化的人物分析系统。之后构建知识图谱,利用数据挖掘、关联分析等技术,提取评估人员的行为模式、精神状态、情绪状态等变化
2021-07-04 12:32:33 111
转载 得分矩阵PAM与BLOSUM的比较与区别
对于蛋白质序列,计分矩阵主要用于记录在做序列比对时两个相对应的残基的相似度,一旦这个矩阵定义好了以后,比对程式就可以利用这个矩阵,尽量将相似的残基排在一起,以达到最好的比对。得分矩阵主要有两种,第一种就是PAM(Point Accepted Multation),另一种就是BLOSUM。1、PAM矩阵(Point Accepted Mutation)基于进化的点突变模型,如果两种氨基酸替换频繁,说明自然界接受这种替换,那么这对氨基酸替换得分就高。一个PAM就是一个进化的变异单位, 即1%的氨基酸改变,
2020-09-15 10:15:52 6183
原创 ACME_Pan-specific_peptide-MHC_class_I_binding_pred
开源项目:https://github.com/HYsxe/ACME问题:预测肽-MHC相互作用。为什么:与MHC分子结合的肽在肿瘤治疗疫苗的开发中起着至关重要的作用。以往对单个等位基因训练模型,泛特定算法也只是采用了简单的模型结构,表现有限。方法流程:本文提出新的泛特异性算法ACME。ACME首先将编码肽和MHC伪序列通过一个卷积层进行初始特征提取,然后将提取的特征映射发送到卷积模块和注意模块。卷积模块:MHC特征图经过0轮、1轮、2轮的最大汇集层、卷积操作后分别与肽特征图连接,再接完全连
2020-09-10 21:25:06 344
原创 2019-ICDM-CAMP: Co-Attention Memory Networks for Diagnosis Prediction in Healthcare
摘要基于RNN对序列EHR进行建模存在三个问题:1、 无法捕捉患者病情的细粒度发展模式2、 没有考虑患者人口统计数据和历史诊断的影响3、 RNN中隐藏的状态向量难以解释。本文提出CAMP模型,将历史诊断、细粒度状况、统计数据与共注意力紧密结合,模型通过一个关键值记忆网络扩充RNN,同时将疾病分类合并到记忆网络中,实现细粒度分析,实例化了记忆网络的读/写操作。关键值记忆网络是将不同类别的信息分别储存在不同的存储槽中,相比RNN有更长的记忆能力。CAMP模型主要有记忆增强序列编码器和基于共同注意
2020-07-14 08:29:37 438
原创 LSTM:A SearchSpace Odyssey
论文链接:http://www.jiqizhixin.com/wp-content/uploads/2015/11/5.-LSTM_-A-Search-Space-Odyssey-.pdf摘要 本文首次对语音识别、手写识别和复调音乐建模这三个具有代表性的任务中的八个LSTM变体进行了大规模分析。使用随机搜索对每个任务的所有LSTM变体的超参数分别进行优化,并使用FANOVA框架评估其重要性。我们总结了5400次实验运行(约15年的CPU时间)的结果。 我们的结果表明,没有一种变体能够显著改善标准L
2020-06-12 20:00:37 568
原创 (2017BIBM) Personalized disease prediction using a CNN-based similarity learning method
论文: https://ieeexplore.ieee.org/document/8217759以往都是使用整个训练数据来构建全局模型,本文是找到与所预测个体相似的群体,然后建立个性化模型来进行预测。文章主体两大部分:相似性学习,个性化预测。相似性学习1)Basic Notations: medical codes -->ICD-9 one-hot编码–>一维向量–>多次就诊向量按时间拼接–>二维矩阵水平维度对应于医疗事件,垂直维度对应于就诊。不同的病人,就诊次数不同,通
2020-05-31 19:38:10 292
转载 TF使用CNN来做Cifar10数据集分类任务
import tensorflow as tfimport numpy as npimport mathimport timefrom tutorials.image.cifar10 import cifar10from tutorials.image.cifar10 import cifar10_input# 本节使用的数据集是CIFAR-10,这是一个经典的数据集,包含60000张32*32的彩色图像,其中训练集50000张,测试集10000张# 一共标注为10类,每一类图片6000张
2020-05-19 21:01:15 327
原创 tensorflow入门函数
tensorflow基础python函数如果你完全不想改动v1版本的代码,怎么办,这么操作即可:import tensorflow.compat.v1 as tftf.disable_v2_behavior()1、tensorflow.placeholder()placeholder是占位符的意思,在tensorflow中类似于函数参数,在执行的时候再赋具体的值。参数含义:• dt...
2020-04-08 12:08:15 103
原创 手写识别数字(画板计算器,python,最简单的三层神经网络)
手写识别数字(含画板)python实现含有五个类,神经网络类、两个类用于实现画板、两个类用于实现计算器。画板识别需要先训练网络后,导出两权重,才能使用。神经网络类import numpyimport scipy.specialimport matplotlib.pyplotimport pylabfrom tensorflow.examples.tutorials.mnist im...
2020-02-19 07:59:46 1177
原创 概率图模型
引用了多篇博客,原创较少。。。概率图模型引入概率图模型的分类马尔可夫性定义图的最大团概率无向图的因子分解优缺点引入图是指由结点以及连接结点的边组成的集合。结点和边的集合分别记作V和E,图记作G=<V,E>。图分为有向图和无向图,区别是边是否有方向。若将图和概率结合起来,赋予结点和边概率中的含义,就组成了概率图模型。其中,图整体构成了概率空间,图中的结点表示概率空间中的随机变...
2019-12-20 00:04:41 290
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人