引入
图是指由结点以及连接结点的边组成的集合。结点和边的集合分别记作V和E,图记作G=<V,E>。图分为有向图和无向图,区别是边是否有方向。
若将图和概率结合起来,赋予结点和边概率中的含义,就组成了概率图模型。其中,图整体构成了概率空间,图中的结点表示概率空间中的随机变量,图中的边表示了随机变量之间的关系。
概率图模型的分类
概率图模型大致分为两个类别:贝叶斯网络(BN)和马尔科夫随机场(MRF)。贝叶斯网络采用有向无环图来表示因果关系,马尔科夫随机场采用无向图来表示变量之间的关系。(环指关联两个重合结点的边)局部有向模型,即同时存在有向边和无向边的模型,包括条件随机场、链图等。
在有向图模型中,直接相连的两个结点肯定是非条件独立的,即是有直接的因果关系的,父节点是“因”,子节点是“果”。但很多时候,两个变量相关不代表两个变量之间存在“因果关系”,如下图x1和x3的关系。因而有了无向图模型。在无向图模型中,相连的两个结点之间可能相关,但不一定是“因果”,相关是不分方向的。
马尔可夫性
马尔可夫性分为:成对马尔可夫性、局部马尔可夫性、全局马尔可夫性。三者是等价的。
成对马尔可夫性:给定所有其他变量,任意两个非邻接变量条件独立。
局部马尔可夫