“答案正确”是自动判题系统给出的最令人欢喜的回复。本题属于 PAT 的“答案正确”大派送 —— 只要读入的字符串满足下列条件,系统就输出“答案正确”,否则输出“答案错误”。
得到“答案正确”的条件是:
字符串中必须仅有 P、 A、 T这三种字符,不可以包含其它字符;
任意形如 xPATx 的字符串都可以获得“答案正确”,其中 x 或者是空字符串,或者是仅由字母 A 组成的字符串;
如果 aPbTc 是正确的,那么 aPbATca 也是正确的,其中 a、 b、 c 均或者是空字符串,或者是仅由字母 A 组成的字符串。
现在就请你为 PAT 写一个自动裁判程序,判定哪些字符串是可以获得“答案正确”的。
输入格式:
每个测试输入包含 1 个测试用例。第 1 行给出一个正整数 n (<10),是需要检测的字符串个数。接下来每个字符串占一行,字符串长度不超过 100,且不包含空格。
输出格式:
每个字符串的检测结果占一行,如果该字符串可以获得“答案正确”,则输出 YES,否则输出 NO。
输入样例:
8
PAT
PAAT
AAPATAA
AAPAATAAAA
xPATx
PT
Whatever
APAAATAA
输出样例:
YES
YES
YES
YES
NO
NO
NO
NO
本题的思路我个人解题如下:
1.字符串中必须仅有 P、 A、 T这三种字符,不可以包含其它字符;这个条件一目了然,P,A,T这三个字母必须出现,不含其他字符,用a,p,t来统计其三个出现的次数,最后求和看是否与字符串的长度相等,如果前者大于后者,则证明有其他字符出现;
2.任意形如 xPATx 的字符串都可以获得“答案正确”,其中 x 或者是空字符串,或者是仅由字母 A 组成的字符串;这个条件解释为PAT两边出现的字符要么相等要么为空;
3.如果 aPbTc 是正确的,那么 aPbATca 也是正确的,其中 a、 b、 c 均或者是空字符串,或者是仅由字母 A 组成的字符串。
现在就请你为 PAT 写一个自动裁判程序,判定哪些字符串是可以获得“答案正确”的。这个条件解释为P前面的字符个数乘以P和T中间出现的字符串的个数等于T后面出现的字符串的个数;我用P和T来记录其出现的位置。
代码最后的那个条件判断包含了全部的条件,其中a+p+ts.length()确保只有PAT三个字符出现;a!=0&&p1&&t==1来保证P和T只出现一次,而A只要出现即可;T-P>1(T是字符T出现的位置,P是字符P出现的位置)来保证字符T必须出现在字符P的右边;P(T-P-1)==s.length()-T-1)则是确保P前面的字符个数乘以P和T中间出现的字符串的个数等于T后面出现的字符串的个数。*
最巧妙的是我用调用函数的思想来表达,用主函数来输出数组里的数据,然后把每个数据依次传回函数sss里面,sss函数则用来判断是否满足三个条件,满足则返回YES,否则则返回NO。
import java.util.Scanner;
public class Main{
public static void main(String[] args) {
Scanner scn = new Scanner(System.in);
int n = scn.nextInt();
String str[] = new String[n]; //定义一个字符串类型的数组str,长度为输入数据的个数
for(int i=0; i<n; i++){
str[i] = scn.next();
}
for(int i=0; i<n; i++){
System.out.println(sss(str[i])); //循环输出输入的数据的正确与假,通过调用sss函数
}
}
public static String sss(String s){ //定义一个sss函数
int a=0,p=0,t=0; //初始化变量,a累计A出现的次数,p累计P出现的次数,t累计T出现的次数
int P=0,T=0;
for(int i=0; i<s.length(); i++){ //通过循环遍历数据
if(s.charAt(i)=='A'){
a++;
}
if(s.charAt(i)=='P'){
p++;
P=i; //P用来记下P出现时的位置
}
if(s.charAt(i)=='T'){
t++;
T=i; //T也一样
}
}
if(a+p+t==s.length()&&a!=0&&p==1&&t==1&&T-P>1&&P*(T-P-1)==s.length()-T-1){ //判断是否满足条件
return "YES";
}
else {
return "NO";
}
}
}