HDU4180RealPhobia(连分数解法)

题意是给你个 a / b a/b a/b,让你找最接近 a / b a/b a/b c / d c/d c/d且满足 c < d < b c<d<b c<d<b

连分数

对于任一一个数,都可以表示为 ( a 0 , a 1 , a 2 ⋯ a n ) (a_0,a_1,a_2\cdots a_n) a0,a1,a2an
意思是 n = a 0 + 1 a 1 + 1 a 2 + 1 a 3 + ⋯ n=a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{a_3+\cdots}}} n=a0+a1+a2+a3+111
2 3 = 0 + 1 1 + 1 2 \frac{2}{3}=0+\frac{1}{1+\frac{1}{2}} 32=0+1+211
所以 2 3 = ( 0 , 1 , 2 ) \frac{2}{3}=(0,1,2) 32=(0,1,2)
有理数的连分数n是有限的,无理数是无限的。
这里只讨论有理数,即可分数表示的数
A B = a 0 + 1 a 1 + 1 a 2 + 1 a 3 + ⋯ \frac{A}{B}=a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{a_3+\cdots}}} BA=a0+a1+a2+a3+111

性质一

[ 0 , a 0 , a 1 , a 2 , a 3 ⋯ a n ] 和 [ a 0 , a 1 , a 2 ⋯ a n ] [0,a_0,a_1,a_2,a_3\cdots a_n]和[a_0,a_1,a_2\cdots a_n] [0,a0,a1,a2,a3an][a0,a1,a2an]互为倒数

性质二

若对于最简分数(非整数) [ a 0 , a 1 , a 2 ⋯ a n ] 与 [ a 0 , a 1 , a 2 ⋯ a n + 1 ] [a_0,a_1,a_2\cdots a_n]与[a_0,a_1,a_2\cdots a_n+1] [a0,a1,a2an][a0,a1,a2an+1]最接近,但相差不等于0,且后者分母比前者大 。

还有很多性质,以后遇到再说。
其他以后接触
回到本题,显然性质二不满足题意,所以 a n + 1 a_n+1 an+1要变成 a n − 1 a_n-1 an1
没有严格的证明,简单说一下自己的理解
这题 a < b a<b a<b,所以 a 0 = 0 a_0=0 a0=0,所以 [ a 1 , a 2 , ⋯ a n ] = ( ( a n − 1 + a n − 1 ) − 1 ‘ + a n − 2 ) − 1 + a n − 3 ) − 1 + ⋯ + a 1 ) − 1 [a_1,a_2,\cdots a_n]=((a_ n^{-1}+a_{n-1})^{-1`}+a_{n-2})^{-1}+a_{n-3})^{-1}+\cdots+a_1)^{-1} [a1,a2,an]=((an1+an1)1+an2)1+an3)1++a11
显然改变 a n a_n an的值对整体的值改变的影响最慢,所以变化最小的会产生在 a n + 1 a_n+1 an+1 a n − 1 a_n-1 an1
至于 a n + 1 a_n+1 an+1为什么会导致分母变大呢,即 d > b d>b d>b
列出几项就知道了
[ a 1 , a 2 ] [a_1,a_2] [a1,a2] 1 a 1 + 1 a 2 \frac{1}{a_1+\frac{1}{a_2}} a1+a211 的分母为 a 1 a 2 + 1 a_1a_2+1 a1a2+1
[ a 1 , a 2 , a 3 ] [a_1,a_2,a_3] [a1,a2,a3]的分母为 a 1 a 2 a 3 + a 1 + a 2 a_1a_2a_3+a_1+a_2 a1a2a3+a1+a2
⋯ \cdots
可知变大任意一个 a a a分母都会变大
所以本题可以先把数化为连分数, a n − 1 a_n-1 an1后再逆回去即可

#include<bits/stdc++.h>
#define ll long long
#define endl '\n'
using namespace std;
ll A[50];
int top;
int main()
{
  ios::sync_with_stdio(0),cin.tie(0);
  int T;
  cin>>T;
  while(T--)
  {
      top=0;
      char s;
      ll a=0,b=0,C,D,c;
      cin>>a>>s>>b;
      ll G=__gcd(a,b);
      if(G>1){
      cout<<a/G<<"/"<<b/G<<endl;
      continue;
      }
      A[++top]=b/a;
      while(b%a!=0)
      {
         c=b%a,b=a,a=c,A[++top]=b/a;
      }//化为连分数
     A[top]--;
     C=1,D=A[top];
     for(int i=top-1;i>=1;i--)
     {
        c=C,C=D;
        D=A[i]*D+c;
     }//逆回去
     cout<<C<<"/"<<D<<endl;
  }

}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于HDU4546问题,还可以使用优先队列(Priority Queue)来解决。以下是使用优先队列的解法思路: 1. 首先,将数组a进行排序,以便后续处理。 2. 创建一个优先队列(最小堆),用于存储组合之和的候选值。 3. 初始化优先队列,将初始情况(即前0个数的组合之和)加入队列。 4. 开始从1到n遍历数组a的元素,对于每个元素a[i],将当前队列中的所有候选值取出,分别加上a[i],然后再将加和的结果作为新的候选值加入队列。 5. 重复步骤4直到遍历完所有元素。 6. 当队列的大小超过k时,将队列中的最小值弹出。 7. 最后,队列中的所有候选值之和即为前k小的组合之和。 以下是使用优先队列解决HDU4546问题的代码示例: ```cpp #include <iostream> #include <vector> #include <queue> #include <functional> using namespace std; int main() { int n, k; cin >> n >> k; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } sort(a.begin(), a.end()); // 对数组a进行排序 priority_queue<long long, vector<long long>, greater<long long>> pq; // 最小堆 pq.push(0); // 初始情况,前0个数的组合之和为0 for (int i = 0; i < n; i++) { long long num = pq.top(); // 取出当前队列中的最小值 pq.pop(); for (int j = i + 1; j <= n; j++) { pq.push(num + a[i]); // 将所有加和结果作为新的候选值加入队列 num += a[i]; } if (pq.size() > k) { pq.pop(); // 当队列大小超过k时,弹出最小值 } } long long sum = 0; while (!pq.empty()) { sum += pq.top(); // 求队列中所有候选值之和 pq.pop(); } cout << sum << endl; return 0; } ``` 使用优先队列的方法可以有效地找到前k小的组合之和,时间复杂度为O(nklog(k))。希望这个解法对你有所帮助!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值