2020年牛客多校第七场I Valuable Forests

题意:一个森林的代价为内部每个节点的度数平方和,求所有为n个点的森林代价之和。
题解:
先上一下公式:
定义:
r e s [ n ] res[n] res[n] n n n个节点的森林种数,令 r e s [ 0 ] = 1 res[0]=1 res[0]=1,显然
r e s [ 1 ] = 1 res[1]=1 res[1]=1
先来求这个数组。

考虑已知 r e s [ 0.. n − 1 ] res[0..n-1] res[0..n1]怎么求 r e s [ n ] res[n] res[n]
公式长这样:
r e s [ n ] = r e s [ n − 1 ] + ∑ i = 2 n C ( n − 1 , i − 1 ) ∗ r e s [ n − i ] ∑ j = 0 i − 2 C ( i − 2 , j ) ∗ ( i − 1 ) i − 2 − j ; res[n]=res[n-1]+\sum\limits_{i=2}^{n}C(n-1,i-1)*res[n-i]\sum\limits_{j=0}^{i-2}C(i-2,j)*(i-1)^{i-2-j}; res[n]=res[n1]+i=2nC(n1,i1)res[ni]j=0i2C(i2,j)(i1)i2j;
取 出 节 点 n 取出节点n n,如果 n n n单独成一棵树,那么产生的贡献便是 r e s [ n − 1 ] res[n-1] res[n1]
考虑节点 n n n放在一颗树大小为 i i i上,那么这棵树的节点选择种数便是 C ( n − 1 , i − 1 ) C(n-1,i-1) C(n1,i1),剩下的 n − i n-i ni个节点形成的森林种数便是 r e s [ n − i ] res[n-i] res[ni],后面部分就是来算节点 n n n放在大小为 i i i的树上(指的是 n n n放完树的大小为 i i i)形成的树的种数。

我们知道一颗大小为 i i i的树可以用一个长度为 i − 2 i-2 i2的序列唯一表示,具体看 prufer序列
那么枚举节点 n n n在序列中出现的次数 j j j,显然出现 j j j次的序列种数为 C ( i − 2 , j ) ∗ ( i − 1 ) i − 2 − k C(i-2,j)*(i-1)^{i-2-k} C(i2,j)(i1)i2k,即取出j个位置放n,剩下的i-2-j个位置在选出的i个节点除了节点n以外随便选

看公式可以发现,给定 i i i后面求和部分是确定的,也就是你可以预处理后面的
G [ i ] = ∑ j = 0 i − 2 C ( i − 2 , j ) ∗ ( i − 1 ) i − 2 − j G[i]=\sum\limits_{j=0}^{i-2}C(i-2,j)*(i-1)^{i-2-j} G[i]=j=0i2C(i2,j)(i1)i2j
r e s [ n ] = r e s [ n − 1 ] ∑ i = 2 n C ( n − 1 , i − 1 ) ∗ r e s [ n − i ] ∗ G [ i ] res[n]=res[n-1]\sum\limits_{i=2}^{n}C(n-1,i-1)*res[n-i]*G[i] res[n]=res[n1]i=2nC(n1,i1)res[ni]G[i]
即预处理出C数组和 i k i^k ik,就可以 O ( n 2 ) O(n^2) O(n2)求出 r e s res res数组。

接下来求解
给定 n n n,答案为
A n s w e r = n ∗ ∑ i = 1 n C ( n − 1 , i − 1 ) ∗ r e s [ n − i ] ∑ j = 0 i − 2 ( j + 1 ) 2 ∗ C ( i − 2 , j ) ∗ ( i − 1 ) i − 2 − j Answer=n*\sum\limits_{i=1}^{n}C(n-1,i-1)*res[n-i]\sum\limits_{j=0}^{i-2}(j+1)^2*C(i-2,j)*(i-1)^{i-2-j} Answer=ni=1nC(n1,i1)res[ni]j=0i2(j+1)2C(i2,j)(i1)i2j
显然各个节点对答案产生的贡献是相同的,所以计算 1 1 1号节点产生的贡献然后乘以 n n n(即是最前面的 n n n)就是答案了。
接下来的做法就跟计算 r e s res res的做法大同小异了
枚举节点1在一棵大小为 i i i上的树,然后枚举点1在这棵大小为 i i i的树上的度数,即可变成在一个长度为 i − 2 i-2 i2的序列中出现的次数(详见 p r u f e r prufer prufer序列)跟 r e s res res数组不同的其实就是前面 ( j + 1 ) 2 (j+1)^{2} (j+1)2而已,同样预处理出后面部分 f [ i ] = ∑ j = 0 i − 2 ( j + 1 ) 2 ∗ C ( i − 2 , j ) ∗ ( i − 1 ) i − 2 − j f[i]=\sum\limits_{j=0}^{i-2}(j+1)^2*C(i-2,j)*(i-1)^{i-2-j} f[i]=j=0i2(j+1)2C(i2,j)(i1)i2j
则答案就是
A n s w e r = n ∗ ∑ i = 1 n C ( n − 1 , i − 1 ) ∗ r e s [ n − i ] ∗ f [ i ] Answer=n*\sum\limits_{i=1}^{n}C(n-1,i-1)*res[n-i]*f[i] Answer=ni=1nC(n1,i1)res[ni]f[i]
代码中的数组都跟上述描述的一致
时间复杂度 O ( n 2 ) O(n^2) O(n2)
代码:

#include<bits/stdc++.h>
#define ll long long
#define endl '\n'
#define rep(i,l,r) for(int i=l;i<=r;i++)
#define per(i,r,l) for(int i=r;i>=l;i--)
#define fi first
#define se second
#define lc T[p].l
#define rc T[p].r
#define mid (l+r>>1)
#define lson lc,l,mid
#define rson rc,mid+1,r
#define sum T[p].val
#define pii pair<int,int>
const int MX=5e3+7;
int mod=1e9+7;
const double pi=3.1415926535897932384;
double isp=1e-13;
using namespace std;
ll qpow(ll a,ll b,ll MOD=mod){for(ll ans=1;;a=a*a%MOD,b>>=1){if(b&1)ans=ans*a%MOD;if(!b)return ans;}}
ll inv(ll a,ll MOD=mod){return qpow(a,MOD-2,MOD);}//要求MOD为质数
ll exgcd(ll a,ll b,ll &x,ll &y){if(b==0){x=1,y=0;return a;}ll ret=exgcd(b,a%b,y,x);y-=a/b*x;return ret;}
ll getInv(int a,int mod){ll x,y;ll d=exgcd(a,mod,x,y);return d==1?(x%mod+mod)%mod:-1;}//求a在mod下的逆元,不存在逆元返回-1,不要求MOD为质数
ll p[MX],res[MX]={1,1},ans[MX],G[MX],g[MX][MX],C[MX][MX],f[MX];
void init()
{
    C[0][0]=1;
    for(int i=1;i<MX;i++)C[i][0]=C[i][i]=1;
    for(int i=1;i<MX;i++)
    {
        for(int j=1;j<MX;j++)
        {
            C[i][j]=C[i-1][j]+C[i-1][j-1];
            C[i][j]%=mod;
        }
    }
    for(int i=1;i<MX;i++)
    {
        g[i][0]=1;
        for(int j=1;j<MX;j++)
        {
            g[i][j]=g[i][j-1]*i%mod;
        }
    }
    for(int i=1;i<MX;i++)
    {
        for(int j=0;j<=i-2;j++)
        {
            f[i]+=(j+1)%mod*(j+1)%mod*C[i-2][j]%mod*g[i-1][i-2-j]%mod;
            G[i]+=C[i-2][j]*qpow(i-1,i-2-j)%mod;
            f[i]%=mod;
            G[i]%=mod;
        }
    }
    for(int n=2;n<MX;n++)
    {
        for(int i=2;i<=n;i++)
        {
            ll r=C[n-1][i-1]*res[n-i]%mod;
            res[n]+=r*G[i]%mod;
            res[n]%=mod;
        }
        res[n]+=res[n-1];
        res[n]%=mod;
    }
}
void solve()
{
    int n;
    cin>>n;
    ll ans=0;
    for(int i=1;i<=n;i++)
    {
        ll r=C[n-1][i-1]*res[n-i]%mod;
        ans+=r*f[i]%mod;
    }
    cout<<ans*n%mod<<endl;
}
int main()
{
 ios::sync_with_stdio(0),cin.tie(0);
 int t;
 cin>>t;
  cin>>mod;
     init();
 while(t--)
 {
     solve();
 }
}


  • 5
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
信息数据从传统到当代,是一直在变革当中,突如其来的互联网让传统的信息管理看到了革命性的曙光,因为传统信息管理从时效性,还是安全性,还是可操作性等各个方面来讲,遇到了互联网时代才发现能补上自古以来的短板,有效的提升管理的效率和业务水平。传统的管理模式,时间越久管理的内容越多,也需要更多的人来对数据进行整理,并且数据的汇总查询方面效率也是极其的低下,并且数据安全方面永远不会保证安全性能。结合数据内容管理的种种缺点,在互联网时代都可以得到有效的补充。结合先进的互联网技术,开发符合需求的软件,让数据内容管理不管是从录入的及时性,查看的及时性还是汇总分析的及时性,都能让正确率达到最高,管理更加的科学和便捷。本次开发的医院后台管理系统实现了病房管理、病例管理、处方管理、字典管理、公告信息管理、患者管理、药品管理、医生管理、预约医生管理、住院管理、管理员管理等功能。系统用到了关系型数据库中王者MySql作为系统的数据库,有效的对数据进行安全的存储,有效的备份,对数据可靠性方面得到了保证。并且程序也具备程序需求的所有功能,使得操作性还是安全性都大大提高,让医院后台管理系统更能从理念走到现实,确确实实的让人们提升信息处理效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值