2021毕设学习 Week 1:

2021毕设学习 Week 1(2021.10.9 - 10):


提示:这里可以添加学习目标
例如:一周掌握 Java 入门知识


论文:NetVLAD: CNN architecture for weakly supervised place recognition

本论文为看的第一篇论文

论文阅读大纲

  1.   本文作者概括(单位,研究背景,研究领域等,发表论文大致情况等);
    
  2.   论文的结论是什么?
    
  3.   论文主要依赖的数学理论是什么?(概率论、统计学、经典/非经典逻辑与集合论(例如rough set)、图论(带权的)、贝叶斯决策理论,近世代数(主要格论)、最优化方法,SVM等等);
    
  4.   是否有实现的算法,算法设计的思想是什么?(贪心法,择优法、分枝定界法、图搜索方法、启发式方法、不确定性方法等等);
    
  5.   实验数据是什么?实验数据的来源,是否可以重复其实验过程?
    
  6.   参考文献评述,有多少参考文献自己是了解的?或者认为可以进一步阅读的,或者熟悉相关内容的?
    

本文作者概述:

本文作者为 Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic

单位: Relja、Josef等为依托Google的全球顶级AI实验室DeepMind成员
作者近几年论文产出稳定,主要研究领域为机器学习、计算机视觉等内容,多为IEEE、CVPR等


论文的结论是什么:

作者搭建了一个新的卷积神经网络用于地理位置识别,可以有效地执行无训练的学习,并且通过NetVLAD、弱建议排名损失的两个不分,实现了主体结构。NetVLAD 提供了一个强力的池子,这个参数可以轻松地插入任何一个CNN结构。 弱建议排名损失使得大量的弱标签数据变得可以获得。


论文主要依赖的数学公式是什么

由于这是我机器学习相关论文看的第一篇,且相关知识目前还没有掌握。本论文主体算法相关为如何实现NetVLAD、Weakly supervised triplet ranking loss等内容。

在这里记录一下,后续正式写论文的时候回来继续研究。


实验数据是什么

作者在这里使用了Google Street View Time Machine, 这种数据集可以提供多种的street-level(街道细节等级?)的panoramic(全景)图片。

在测试数据集上,作者使用了两个公共的数据集:
Pittsburgh (Pitts250k) 包含250k的数据库图片,也是从Google Street View下载的。作者在这里将数据集分割成3等份,后面为了追求速度更是使用了这个数据集的子集Pitts30k

本数据库Google可查,数据库官网网址:
https://blog.mapillary.com/update/2020/04/27/Mapillary-Street-Level-Sequences.html

Tokyo 24/7 包含了76k的数据库,这个查询数据集在白天、日落和晚上拍摄的,但是实际上的数据库图片都是白天拍的,所以要处理一下。
后面的数据库成果测试中,有一部分是给夜晚的图片,识别出白天的这个建筑。
本数据库谷歌可查,官网网址如下:
http://www.ok.ctrl.titech.ac.jp/~torii/project/247/

同时官网配备与本数据库配套代码可用(代码未读)

图源论文


参考文献评述

本篇论文共有80+篇参考文献,其中,根据标题简单判断以下几篇如果后续有需要可以阅读了解。
由于我目前处于刚刚接触地点识别、计算机视觉、机器学习等领域,需要大量阅读相关文献培养与之相关的视野与知识。

1、G. Schindler, M. Brown, and R. Szeliski, “City-scale location recognition,” in Proc. CVPR, 2007. (应该是一篇通识介绍性论文,可以通过这个了解这一领域)

2、A. Torii, J. Sivic, T. Pajdla, and M. Okutomi, “Visual place recognition
with repetitive structures,” in Proc. CVPR, 2013.

3、A. Torii, R. Arandjelovic, J. Sivic, M. Okutomi, and T. Pajdla, “24/7 ´
place recognition by view synthesis,” in Proc. CVPR, 2015.

上两篇应该是与这两个数据集相关的,可以看一下

https://www.di.ens.fr/willow/research/netvlad/
这个网站存放了可以访问的NetVlad代码、演示过程、数据集等内容,后续做毕设的时候如果有用可以认真阅读

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

枫楠Kuiy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值