Spark总结2-IDEA中的Spark工程

IDEA中的Spark工程

对工程中的pom.xml文件配置

<!-- 声明公有的属性 -->
<properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
        <encoding>UTF-8</encoding>
        <scala.version>2.11.8</scala.version>
        <spark.version>2.2.0</spark.version>
        <hadoop.version>2.7.1</hadoop.version>
        <scala.compat.version>2.11</scala.compat.version>
    </properties>
<!-- 声明并引入公有的依赖 -->
    <dependencies>
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>
        <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_2.11</artifactId>
        <version>${spark.version}</version>
    </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
    </dependencies>

<!-- 配置构建信息 -->
    <build>
        <!-- 资源文件夹 -->
        <sourceDirectory>src/main/scala</sourceDirectory>
        <!-- 声明并引入构建的插件 -->
        <plugins>
             <!-- 用于编译Scala代码到class -->
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.2</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                        <configuration>
                            <args>
                                <arg>-dependencyfile</arg>
                                <arg>${project.build.directory}/.scala_dependencies</arg>
                            </args>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <!-- 程序打包 -->
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>2.4.3</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                             <!-- 过滤掉以下文件,不打包 :解决包重复引用导致的打包错误-->
                            <filters>
                                <filter><artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers>
                                <!-- 打成可执行的jar包 的主方法入口-->
                                <transformer  implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass></mainClass>
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

scala实现WordCount

package Day01

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

//spark版本的wordcount
object SparkWordCount {
  def main(args: Array[String]): Unit = {
       //ps:模板封装成一个方法以后调用方法即可
       //模板代码
       /*
        需要创建SparkConf()对象 相当于MR中配置
        必传参数
        setAppName() 设置任务的名称 不传默认是一个UUID产生名字
        设置运行模式
        不写这个参数可以打包提交集群
        写这个参数设置本地模式
        setMaster() 传入的参数有如下写法
        "local"   --> 本地一个线程来进行任务处理
        "local[数值]" --> 开始相应数值的线程来模拟spark集群运行任务
        "local[*]" --> 开始相应线程数来模拟spark集群运行任务
        两者区别:
        数值类型--> 使用当前数值个数来进行处理
        * -->当前程序有多少空闲线程就用多少空闲线程处理
        */
       val conf = new SparkConf().setAppName("SparkWordCount")
       //创建sparkContext对象
       val sc =  new SparkContext(conf)
    //通过sparkcontext对象就可以处理数据

    //读取文件 参数是一个String类型的字符串 传入的是路径
    val lines: RDD[String] = sc.textFile(args(0))

    //切分数据
     val words: RDD[String] = lines.flatMap(_.split(" "))

    //将每一个单词生成元组 (单词,1)
      val tuples: RDD[(String, Int)] = words.map((_,1))

    //spark中提供一个算子 reduceByKey 相同key 为一组进行求和 计算value
    val sumed: RDD[(String, Int)] = tuples.reduceByKey(_+_)

    //对当前这个结果进行排序 sortBy 和scala中sotrBy是不一样的 多了一个参数
    //默认是升序  false就是降序
     val sorted: RDD[(String, Int)] = sumed.sortBy(_._2,false)

    //将数据提交到集群存储 无法返回值
       sorted.saveAsTextFile(args(1))

     //本地模式
    //一定要设置setMaster()
    //可以直接打印
    //println(sorted.collect.toBuffer)
    //这种打印也可以
    //sorted.foreach(println)

    //回收资源停止sc,结束任务
    sc.stop()
  }
}

将程序打包成jar包

在这里插入图片描述然后将jar包上传到对应的节点上,在spark安装目录下的bin目录下执行

./spark-submit \
> --class Day01.SparkWordCount \
> --master spark://hadoop01:7077 \
> --executor-memory 512m \
> --total-executor-cores 2 \
> /root/BigData1815Spark-1.0-SNAPSHOT.jar hdfs://hadoop01:8020/word.txt
hdfs://hadoop01:8020/out2

java实现WordCount

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
/**
 * java版本wordCount
 */
public class JavaWordCount {
    public static void main(String[] args) {
//1.先创建conf对象进行配置主要是设置名称,为了设置运行模式
        SparkConf conf = new SparkConf().setAppName("JavaWordCount").setMaster("local");
//2.创建context对象
        JavaSparkContext jsc = new JavaSparkContext(conf);
        JavaRDD<String> lines = jsc.textFile("dir/file");
//进行切分数据 flatMapFunction是具体实现类
        JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public Iterator<String> call(String s) throws Exception {
               t List<String> splited = Arrays.asList(s.split(" "));
                return splited.iterator();
            }

        });
//将数据生成元组
//第一个泛型是输入的数据类型 后两个参数是输出参数元组的数据
        JavaPairRDD<String, Integer> tuples = words.mapToPair(new PairFunction<String, String,
                Integer>() {
            @Override
            public Tuple2<String, Integer> call(String s) throws Exception {
                return new Tuple2<String, Integer>(s, 1);
            }
        });
//聚合
        JavaPairRDD<String, Integer> sumed = tuples.reduceByKey(new Function2<Integer, Integer,
                Integer>() {
            @Override
//第一个Integer是相同key对应的value
//第二个Integer是相同key 对应的value
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1 + v2;
            }
        });
//因为Java api没有提供sortBy算子,此时需要将元组中的数据进行位置调换,然后在排序,排完序在换回
//第一次交换是为了排序
        JavaPairRDD<Integer, String> swaped = sumed.mapToPair(new PairFunction<Tuple2<String,
                Integer>, Integer, String>() {
            @Override
            public Tuple2<Integer, String> call(Tuple2<String, Integer> tup) throws Exception {
                return tup.swap();
            }
        });
//排序
        JavaPairRDD<Integer, String> sorted = swaped.sortByKey(false);
//第二次交换是为了最终结果 <单词,数量>
        JavaPairRDD<String, Integer> res = sorted.mapToPair(new PairFunction<Tuple2<Integer,
                String>, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(Tuple2<Integer, String> tuple2) throws Exception
            {
                return tuple2.swap();
            }
        });
        System.out.println(res.collect());
        res.saveAsTextFile("out1");
        jsc.stop();
    }
}

//修改为Lambda表达式
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;

import java.util.Arrays;

public class JavaLamdaWC {
    public static void main(String[] args) {
        SparkConf conf = new SparkConf().setAppName("JavaLamdaWC").setMaster("local[2]");
        JavaSparkContext jsc = new JavaSparkContext(conf);

        JavaRDD<String> lines = jsc.textFile("dir/file");
		//进行切分数据 flatMapFunction是具体实现类
        JavaRDD<String> words = lines.flatMap(line -> Arrays.asList(line.split(" ")).iterator());
        //将数据生成元组 
        JavaPairRDD<String, Integer> tup = words.mapToPair(word -> new Tuple2<>(word, 1));
        //聚合
        JavaPairRDD<String, Integer> aggred = tup.reduceByKey((v1, v2) -> v1 + v2);
     //因为Java api没有提供sortBy算子,此时需要将元组中的数据进行位置调换,然后在排序,排完序在换回
        JavaPairRDD<Integer, String> swaped = aggred.mapToPair(tuple -> tuple.swap());
      //排序
        JavaPairRDD<Integer, String> sorted = swaped.sortByKey(false);
//第二次交换是为了最终结果 <单词,数量>
        JavaPairRDD<String, Integer> res = sorted.mapToPair(tuple -> tuple.swap());

        System.out.println(res.collect());
        res.saveAsTextFile("out1");
        jsc.stop();
    }
}
  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值