SparkSQL总结1概念

Spark 专栏收录该内容
10 篇文章 0 订阅

SparkSQL介绍

Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。

我们已经学习了Hive,它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所以Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快!

Hive的应用其实就是应对不会写Java的开发人员但是有会写SQL的数据库而言提供的是MR的一种简化

SparkSQL其实也就是对之前所学习的SparkCore中RDD的一种简化,用SQL的语言可以对RDD编程进行开发

SparkSQL的数据抽象

对于SparkCore而言对数据的进行操作需要先转换成RDD,对RDD可以使用各种算子进行处理,最终对数据进行统一的操作,所以我们将RDD看做是对数据的封装(抽象)

对于SparkSQL而言对数据进行操作的也需要进行转换,这里提供了两个新的抽象,分别是DataFrame和DataSet

SparkSQL的数据抽象

对于SparkCore而言对数据的进行操作需要先转换成RDD,对RDD可以使用各种算子进行处理,最终对数据进行统一的操作,所以我们将RDD看做是对数据的封装(抽象)

对于SparkSQL而言对数据进行操作的也需要进行转换,这里提供了两个新的抽象,分别是DataFrame和DataSet

RDD vs DataFrames vs DataSet

首先从版本的产生上来看
RDD (Spark1.0) —> Dataframe(Spark1.3) —> Dataset(Spark1.6)

RDD

RDD是一个懒执行的不可变的可以支持Functional(函数式编程)的并行数据集合。

RDD的最大好处就是简单,API的人性化程度很高。

RDD的劣势是性能限制,它是一个JVM驻内存对象,这也就决定了存在GC的限制和数据增加时Java序列化成本的升高。

DataFrame

简单来说DataFrame是RDD+Schema的集合

什么是Schema?

之前我们学习过MySQL数据库,在数据库中schema是数据库的组织和结构模式中包含了schema对象,可以是(table)、(column)、数据类型(data type)、视图(view)、存储过程(stored procedures)、关系(relationships)、主键(primary key)、外键(foreign key)等,Sechema代表的就是一张表

与RDD类似,DataFrame也是一个分布式数据容器。然而DataFrame更像传统数据库的二维表格,除了数据以外,还记录数据的结构信息,即schema。

DataFrame是为数据提供了Schema的视图。可以把它当做数据库中的一张表来对待

DataFrame也是懒执行的。

性能上比RDD要高,主要有两方面原因:
定制化内存管理
在这里插入图片描述

优化的执行计划
在这里插入图片描述

Dataset

是Dataframe API的一个扩展,是Spark最新的数据抽象

用户友好的API风格,既具有类型安全检查也具有Dataframe的查询优化特性。

Dataset支持编解码器,当需要访问非堆上的数据时可以避免反序列化整个对象,提高了效率。

样例类被用来在Dataset中定义数据的结构信息,样例类中每个属性的名称直接映射到DataSet中的字段名称。

Dataframe是Dataset的特列,DataFrame=Dataset[Row] ,所以可以通过as方法将Dataframe转换为Dataset。Row是一个类型,跟Car、Person这些的类型一样,所有的表结构信息我们都用Row来表示。

DataSet是强类型的。比如可以有Dataset[Car],Dataset[Person].

ps:DataSet[Row]这个类似于我们学习的泛型Row就是泛型类型

三者的共性

1、RDD、DataFrame、Dataset全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利

2、三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算,极端情况下,如果代码里面有创建、转换,但是后面没有在Action中使用对应的结果,在执行时会被直接跳过.

3、三者都会根据spark的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出

4、三者都有partition的概念

5、三者有许多共同的函数,如filter,排序等

6、在对DataFrame和Dataset进行操作许多操作都需要这个包进行支持

7、DataFrame和Dataset均可使用模式匹配获取各个字段的值和类型

三者的区别

RDD

1、RDD一般和spark mlib同时使用

2、RDD不支持sparksql操作

DataFrame

1、与RDD和Dataset不同,DataFrame每一行的类型固定为Row,只有通过解析才能获取各个字段的值每一列的值没法直接访问

2、DataFrame与Dataset一般不与spark mlib同时使用

3、DataFrame与Dataset均支持sparksql的操作,比如select,groupby之类,还能注册临时表/视窗,进行sql语句操作

4、DataFrame与Dataset支持一些特别方便的保存方式,比如保存成csv,可以带上表头,这样每一列的字段名一目了然

利用这样的保存方式,可以方便的获得字段名和列的对应,而且分隔符(delimiter)可以自由指定。

Dataset

Dataset和DataFrame拥有完全相同的成员函数,区别只是每一行的数据类型不同。

DataFrame也可以叫Dataset[Row],每一行的类型是Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的getAS方法或者共性中的第七条提到的模式匹配拿出特定字段

而Dataset中,每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获得每一行的信息

Dataset在需要访问列中的某个字段时是非常方便的,然而,如果要写一些适配性很强的函数时,如果使用Dataset,行的类型又不确定,可能是各种case class,无法实现适配,这时候用DataFrame即Dataset[Row]就能比较好的解决问题

  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值