[AcWing] 1018. 最低通行费(C++实现)数字三角形模型

1. 题目

在这里插入图片描述
在这里插入图片描述

2. 读题(需要重点注意的东西)

读题: 从左上角走到右下角,商人必须在 (2N−1) 个单位时间穿越出去===》即只能向右或者向下走,走到终点时的最值是多少?

思路:
在这里插入图片描述
因此本题满足数字三角形模型的特征;

相当于在[AcWing] 1015. 摘花生(C++实现)数字三角形模型模板题的基础上进行了变换,即将求最大值变为了最小值。

本题需要唯一注意的是:
由于是求最小值,因此在边界时,由于会出界,不加判断的话就会取超过边界的值为0,就会出错,因此需要判断i == 1 j == 1的边界条件,当i == 1时,只能向右走;当j == 1时,只能向下走。

3. 解法

---------------------------------------------------解法---------------------------------------------------

#include<iostream>
using namespace std;

const int N = 110;
int f[N][N];
int w[N][N];

int main(){
    int n;
    cin >> n;
    for(int i = 1;i <= n;i++)
        for(int j = 1;j <= n;j++)
            cin >> w[i][j];
            
    for(int i = 1;i <= n;i++)
        for(int j = 1;j <= n;j++){
            if(i > 1 && j > 1) f[i][j] = min(f[i-1][j],f[i][j-1]) + w[i][j];
            if(i == 1) f[i][j] = f[i][j - 1] + w[i][j];
            if(j == 1) f[i][j] = f[i - 1][j] + w[i][j];
        }
    cout << f[n][n] ;
}

可能存在的问题

4. 可能有帮助的前置习题

5. 所用到的数据结构与算法思想

  • 动态规划
  • 数字三角形模型

6. 总结

数字三角形模型模板题,可以发展为不同的数字三角形题目

数字三角形模型的特征:
1. 从左上角走到右下角
2. 走一条或n条路径
3. 取最大值或最小值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cloudeeeee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值