RuntimeError: CUDA error: CUBLAS_STATUS_NOT_INITIALIZED when calling `cublasCreate(handle)`

当GPU初始化不成功时,可以使用nvidia-smi工具检查GPU状态。如果GPU正忙,可以指定空闲的GPU进行运行。设置CUDA_VISIBLE_DEVICES环境变量有两种方法:一是通过命令行参数,如`CUDA_VISIBLE_DEVICES=1,2,3pythontrain.py`;二是直接在Python代码中使用os模块设置,但需在导入torch之前执行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

没有初始化成功有可能是当前GPU正在忙
可以使用

nvidia-smi

来查看当前GPU的使用情况;
可能会输出如下图片:
在这里插入图片描述
查看当前哪些GPU空闲;
接着再使用指定GPU命令进行运行;
指定GPU方式有2种:

1. 终端运行时加入

CUDA_VISIBLE_DEVICES=1,2,3 python train.py

其中,1,2,3代表要使用的GPU;//注意编号从0开始!!!
train.py 则为要运行的文件名

2.代码中设定

os.environ[“CUDA_VISIBLE_DEVICES”] = “2, 3, 4,5”
此条命令运行必须放在import torch之前,否则不能生效。

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2,3,4,5"
#指定GPU2,3,4,5运行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值